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HANDSIGHT: A TOUCH-BASED WEARABLE SYSTEM TO INCREASE
INFORMATION ACCESSIBILITY FOR PEOPLE WITH VISUAL IMPAIRMENTS



ACTIVITIES OF DAILY LIVING

Getting dressed Preparing food

Wayfinding Shopping



Previous research has used mobile cameras 
and computer vision for at-a-distance tasks



but few have attempted to provide access 
to visual information through touch



For people with visual impairments, touch is a primary
means of obtaining information about the physical world



RESEARCH GOAL
Augment visually impaired users’ sense of touch 
with interactive, real-time computer vision to 
improve the accessibility of information.



Category #1: access to visual information in the physical world



Category #2: access to digital information by controlling computers or mobile devices



HANDSIGHT
Key aspects:

1. Physical hardware
2. Real-time algorithms
3. Interactive interface
4. Usability evaluations

OPEN QUESTIONS
What is the best method to recognize the 
content that the user is touching, and how 
should information about that content be 
conveyed to the user?



SUMMARY OF CONTRIBUTIONS

Development and iterative refinement of HandSight, a 
novel wearable system to assist visually impaired users.
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Reading and exploring 
printed documents

3

Controlling mobile devices 
through on-body input
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AR Magnification & 
Identifying Colors/Patterns



SUMMARY OF CONTRIBUTIONS

Development and iterative refinement of HandSight, a 
novel wearable system to assist visually impaired users.

Findings from user evaluations across a diverse set of 
tasks, which demonstrate advantages and disadvantages  
of our finger-worn approach.



SUMMARY OF CONTRIBUTIONS

Development and iterative refinement of HandSight, a 
novel wearable system to assist visually impaired users.

Findings from user evaluations across a diverse set of 
tasks, which demonstrate advantages and disadvantages  
of our finger-worn approach.

Design Implications for future wearable assistive 
systems and for the fields of accessibility, computer 
vision, AR and VR, and human-computer interaction.



HANDSIGHT APPLICATION AREAS



Reading/Exploring Text
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Reading/Exploring Text On-Body Input
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Reading/Exploring Text On-Body Input Clothing Colors/Patterns
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Reading/Exploring Text On-Body Input Clothing Colors/Patterns

HANDSIGHT APPLICATION AREAS



RELATED WORK



Magic Finger: X.D. Yang, et al., "Magic finger: always-available input through finger instrumentation," in Proceedings of UIST 2012.

Optical mouse sensor Tiny CMOS camera

RELATED WORK



Magic Finger: X.D. Yang, et al., "Magic finger: always-available input through finger instrumentation," in Proceedings of UIST 2012.

RELATED WORK



FingerReader: R. Shilkrot, et al., “FingerReader: a Wearable Device to Explore Printed Text on the Go," in Proceedings of CHI 2015.

Finger-mounted camera

Haptic vibration motors

RELATED WORK



FingerReader: R. Shilkrot, et al., “FingerReader: a Wearable Device to Explore Printed Text on the Go," in Proceedings of CHI 2015.

RELATED WORK



OrCam MyEye: http://www.orcam.com

Glasses-mounted cameraRELATED WORK



Access Lens: S. Kane, et al., "Access lens: a gesture-based screen reader for real-world documents," in Proceedings of CHI 2013.

RELATED WORK



Access Lens: S. Kane, et al., "Access lens: a gesture-based screen reader for real-world documents," in Proceedings of CHI 2013.

RELATED WORK



OmniTouch: C. Harrison, et al., “OmniTouch: Wearable Multitouch Interaction Everywhere," in Proceedings of UIST 2011.

RELATED WORK



OmniTouch: C. Harrison, et al., “OmniTouch: Wearable Multitouch Interaction Everywhere," in Proceedings of UIST 2011.

RELATED WORK



VizLens: A. Guo, et al., “VizLens: A Robust and Interactive Screen Reader for Interfaces in the Real World," in Proceedings of UIST 2016.

RELATED WORK



VizLens: A. Guo, et al., “VizLens: A Robust and Interactive Screen Reader for Interfaces in the Real World," in Proceedings of UIST 2016.

RELATED WORK



Reading/Exploring Text On-Body Input Clothing Colors/Patterns
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Reading/Exploring Text On-Body Input Clothing Colors/Patterns

HANDSIGHT APPLICATION AREAS



Advantages of Touch-Based Reading
1. Does not require framing an overhead camera
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Advantages of Touch-Based Reading
1. Does not require framing an overhead camera
2. Allows direct access to spatial information
3. Provides better control over pace and rereading

New Challenges
1. How to precisely trace a line of text?
2. How to support physical navigation?



2. Audio via built-in
or external speakers

1. Finger-mounted
haptic vibration

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



Move up

1. Finger-mounted
haptic vibration

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



Move down
1. Finger-mounted

haptic vibration

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



2. Audio via built-in
or external speakers

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



Higher pitch: move up

2. Audio via built-in
or external speakers

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



Lower pitch: move down

2. Audio via built-in
or external speakers

COMPARING TWO TYPES OF
DIRECTIONAL FINGER GUIDANCE



Lee Stearns, Ruofei Du, Uran Oh, Yumeng Wang, Leah Findlater, Rama Chellappa, and Jon E. Froehlich, “The Design and Preliminary Evaluation of a 
Finger Mounted Camera and Feedback System to Enable Reading of Printed Text For the Blind," in Proceedings of ECCV 2014 (ACVR Workshop).

READING PILOT STUDY

METHODS
4 Participants
3 female, 1 male, ages 43-64
3 totally blind, 1 severe low vision



audio-only haptic-only

Example finger traces—Red lines mark drift off of the line

Audio was more accurate, about twice as fast, and preferred by 3 out of 4 participants

READING PILOT STUDY

FINDINGS
4 Participants
3 female, 1 male, ages 43-64
3 totally blind, 1 severe low vision



Study I: initial iPad study (19 participants) Study II: physical prototype study (4 participants)

Lee Stearns, Ruofei Du, Uran Oh, Catherine Jou, Leah Findlater, David Ross, and Jon E. Froehlich, “Evaluating Haptic and Auditory Directional Guidance 
to Assist Blind People in Reading Printed Text Using Finger-Mounted Cameras," in ACM Transactions on Accessible Computing, October 2016.

READING STUDIES I & II



Study I: initial iPad study (19 participants)

Study Overview

Study I: initial iPad study (19 participants)

Goals:
Compare audio/haptic
Explore & interpret spatial layouts
Assess reading and comprehension

READING STUDIES I & II

Participants: 8 female, 11 male, ages 26-67)
All totally blind or minimal light perception



Used an iPad to focus on user experience, gather finger trace data

READING STUDY I



Exploration Mode Reading Mode

SYSTEM DESIGN

EXPLORATION AND READING MODES



Continuous audio feedback to identify content beneath finger
Flute sound: text
Cello sound: picture
Silence: empty space

SYSTEM DESIGN

EXPLORATION MODE



Flute sound: text

Silence: empty space

Cello sound: picture



Right index finger to read, left to anchor start of line

Two directional guidance conditions: audio or haptic
Used to stay on the line or find the start of the next line
Audio: pitch of continuous audio
Haptic: strength and position of vibration

Additional audio cues (same for both conditions)
Start/end of line or paragraph
Synthesized speech

SYSTEM DESIGN

READING MODE



Above the line: downward guidance
(low pitch or lower vibration motor)

Below the line: upward guidance
(high pitch or upper vibration motor)

Start/end of line or paragraph
(short but distinctive audio cues)



Example finger traces—Dashed red lines mark drift off of the line

Haptic vs. Audio: Quantitative Performance (n=19)

audio haptic

STUDY I

FINDINGS



Haptic vs. Audio: Quantitative Performance (n=19)

audio haptic

0.28cm
Absolute error from line center

Z19=-2.374, p=.018, r=.54

0.21cm
Absolute error from line center

STUDY I

FINDINGS



Pros

Low learning curve

Flexible

Direct control over speed

Overall Reading Experience

STUDY I

FINDINGS



Overall Reading Experience

Pros Cons

Low learning curve

Flexible

Direct control over speed

Hard to use for reading

High cognitive load may 
affect comprehension

STUDY I

FINDINGS



Exploration Mode
Participants appreciated direct access to spatial information, and 
nearly all able to locate images and count the number of columns.

STUDY I

FINDINGS



Study I: initial iPad study (19 participants) Study II: physical prototype study (4 participants)

READING STUDIES I & II



Study II: physical prototype study (4 participants)

READING STUDIES I & II Goals:
Evaluate HandSight prototype
Gather subjective feedback
Compare with KNFB Reader iOS

Participants: 1 female, 3 male, ages 39-64)
All totally blind or minimal light perception



STUDY II

PROTOTYPE



Participants used preferred guidance from 
Study I to explore and read physical documents

STUDY II

METHOD: HANDSIGHT



Photographed and read physical documents

STUDY II

METHOD: KNFB READER IOS



IMPLICATIONS
ADVANTAGES AND DISADVANTAGES OF A FINGER-BASED READING APPROACH

Pros
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Pros Cons

Spatial layout information

Direct control over reading

Reduced camera framing issues

Efficient text detection and recognition
* We observed these in our studies

Slower, requires increased 
concentration and physical dexterity

* Consistent with Shilkrot et al. 2014, 2015
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Pros Cons

Spatial layout information

Direct control over reading

Reduced camera framing issues

Efficient text detection and recognition
* We observed these in our studies

Slower, requires increased 
concentration and physical dexterity

* Consistent with Shilkrot et al. 2014, 2015

Importance of spatial layout 
information is unclear

IMPLICATIONS
ADVANTAGES AND DISADVANTAGES OF A FINGER-BASED READING APPROACH



CONTRIBUTIONS
Implementation and systematic evaluation of haptic 

and auditory cues for directional finger guidance
Identification of tradeoffs of both the finger guidance 

methods and touch-based reading in general in 
terms of speed, accuracy, and user preference

Proof-of-concept realtime system for reading and 
exploring printed documents via touch



EXTENSION FOR LOW VISION USERS

Lee Stearns, Victor De Souza, Jessica Yin, Leah Findlater, and Jon E. Froehlich, “Augmented Reality Magnification for Low Vision Users 
with the Microsoft HoloLens and a Finger-Worn Camera," in Proceedings of ASSETS 2017.

Lee Stearns, Leah Findlater, and Jon E. Froehlich, “Design of an Augmented Reality Magnification Aid for Low Vision Users," in 
Proceedings of ASSETS 2018 (To Appear).



Photo from Vision Dynamics (Opaltec Clearview C Flex)

Common reading aids include closed circuit television (CCTV), 
handheld optical or digital magnifiers, and smartphone apps



AR has the potential to be more portable, with easier multi-
tasking, and better integrated into a person’s everyday life.

For low vision users, head-mounted displays that 
enhance visual capabilities are particularly promising

Photo from Artefact Group (eSight 3)



FORESEE
Zhao et al., ASSETS 2015



Photo from Wikimedia Commons

GOOGLE GLASS

Hwang and Peli, Optometry and Vision Science, Aug 2014

Pundlik et al., IEEE Trans. Neural Systems and Rehab. Engineering, Jan 2017

Edge Enhancement

Smartphone Magnification



COMMERCIAL HEAD-WORN VISION ENHANCEMENT SYSTEMS

eSight NuEyes IrisVision



Video by Yang et al., 2015

AR systems combine real and virtual objects, are 
interactive in real-time, and are registered in 3D

Ronald T. Azuma (paraphrased)
A Survey of Augmented Reality, 1997



Photo from Wikimedia Commons

MICROSOFT HOLOLENS



OUR APPROACH



Augment rather than replace existing vision capabilities

DESIGN SPACE

GOALS



Augment rather than replace existing vision capabilities

Leverage augmented reality and persistent 3D content

DESIGN SPACE

GOALS



Augment rather than replace existing vision capabilities

Leverage augmented reality and persistent 3D content

Prioritize customization and flexibility

DESIGN SPACE

GOALS



INITIAL INVESTIGATION: HOLOLENS

DESIGN
Built-in camera to capture images

Two display modes: 
Fixed 2D & Fixed 3D

Voice Commands to select mode

Image Enhancements:
Binary threshold & Invert colors



INITIAL INVESTIGATION: HOLOLENS

OBSERVATIONS
Camera resolution too low

Turning head to look at desired 
content was uncomfortable

Voice commands cumbersome, 
imprecise, limited customization



AR PROTOTYPE 1
HoloLens and Finger-Camera



PHYSICAL DESIGN
AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA



PHYSICAL DESIGN
AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA



VIRTUAL DISPLAYS
AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA



USER INTERACTIONS
AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

METHOD

3 Low Vision Participants (1 Female, 2 Male, Ages 28-54)
Each participant used three virtual display designs to read 
documents and other text (e.g., mail, pill bottle, cereal box)



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

METHOD

They provided feedback and suggestions on their likes, dislikes, 
design preferences, ideas for improvements or new features



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

FINDINGS

Finger Tracking

Can help to quickly 
search a document.

Fixed 2D

Always visible, required 

least concentration.

Fixed 3D (Vertical or Horizontal) 

Reading experience similar to using 
a CCTV or handheld magnifier.

Virtual Display Designs



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

FINDINGS
Finger-Worn Camera 

[+] Flexible, allows hands-free use

[–] Requires moving finger to read

[–] Small field of view (~3-4 lines)



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

FINDINGS

HoloLens Display

[–] Low contrast due to transparency

[–] Narrow view, center of vision



AR PROTOTYPE 1: HOLOLENS AND FINGER-CAMERA

FINDINGS

User Input

[–] Midair gestures difficult to use

[–] Unable to make quick adjustments



AR PROTOTYPE 2
HoloLens and Smartphone



PHYSICAL DESIGN
AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

PHYSICAL DESIGN



VIRTUAL DISPLAYS
AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE



USER INTERACTIONS
AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

METHOD

6 Low Vision Participants (3 Female, 3 Male, Ages 28-68)
Each participant used three virtual display designs to read 
documents and other text (e.g., mail, pill bottle, cereal box)



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

FINDINGS
Participants were more successful and positive 
about their experience using this version of our system.

They were better able to experience the AR aspects of 
our approach, which most participants found promising.



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

FINDINGS

Attached to Headset

Easier to focus on the text

Attached to World

Natural reading experience

Easier to multitask

Attached to Phone

Versatile

Intuitive interactions

Virtual Display Designs

Potentially distracting



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

FINDINGS
Smartphone

[+] Better camera

[+] More usable interactions

[–] No longer hands-free

[–] Too heavy for extended use



AR PROTOTYPE 2: HOLOLENS AND SMARTPHONE

FINDINGS
HoloLens

Issues with contrast, field of view, and 
physical size and weight still present.

Participants with central vision loss 
struggled to use the system.



CONCLUSIONS

Strengths and Weaknesses of 3D AR for Magnification
[+] Enables new interactions not possible with other approaches
[+] Good for multitasking



CONCLUSIONS

Strengths and Weaknesses of 3D AR for Magnification
[+] Enables new interactions not possible with other approaches
[+] Good for multitasking
[–] May require more effort to use than fixed 2D display



CONTRIBUTIONS
Design space exploration: AR magnification & 

enhancement
Implementation and evaluation of proof-of-concept 

designs with low vision users
Proposed design recommendations for future AR 

vision enhancement aids
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Reading/Exploring Text On-Body Input Clothing Colors/Patterns

HANDSIGHT APPLICATION AREAS





Advantages:
1. More easily scalable to other body locations and surfaces
2. Larger input vocabulary: touch position × relative gestures
3. Simplified sensing and processing due to sensor positioning

ON-BODY INPUT
USING FINGER-WORN SENSORS



Lee Stearns, Uran Oh, Bridget J. Cheng, Leah Findlater, David Ross, Rama Chellappa, and Jon E. Froehlich, “Localization of Skin Features 
on the Hand and Wrist from Small Image Patches," in Proceedings of ICPR 2016.

30 participants × 17 locations × 20 samples
Total dataset size: 10,198 images
(one participant accidentally skipped two trials)

ON-BODY STUDY I

DATASET
30 Sighted Participants
23 Female, 7 Male
Ages 18-59



ON-BODY STUDY I

ALGORITHMS
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ON-BODY STUDY I
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ON-BODY STUDY I

ALGORITHMS



Within-Person Classification Experiment (n=30)

Coarse-Grained Localization (Stage 2)
(5 classes:    finger,    palm,    knuckle, …)
accuracy: 99.1% (SD=0.9%)

Fine-Grained Localization (Stage 3)
(17 classes:    palm up,    palm down, …)
accuracy: 88.0% (SD=4.5%)

Fine-Grained Localization (Stage 4)
accuracy: 96.4% (SD=2.3%)

ON-BODY STUDY I

EXPERIMENTS AND RESULTS



ON-BODY STUDY I

EXPERIMENTS AND RESULTS

Similar
Textures

Palm UpPalm Down

Out of
Focus

Insufficient
Contrast

Palm UpPalm Right Palm UpPalm Down

Back of HandOuter Wrist

Query Image 1 Predicted Location 1 Query Image 2 Predicted Location 2

Back of HandOuter WristPalm CenterInner Wrist

Inconsistent Touch Location

Palm Right Palm Up

Query Image 1 Predicted Location 1

Query Image 2 Predicted Location 2

Palm Right Palm Left

Correct Location 1

Palm Right

Correct Location 2

Palm Right

Within-Person Classification Experiment (n=30)
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Insufficient
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ON-BODY STUDY I

EXPERIMENTS AND RESULTS

Similar
Textures

Palm UpPalm Down

Out of
Focus

Insufficient
Contrast

Palm UpPalm Right Palm UpPalm Down

Back of HandOuter Wrist

Query Image 1 Predicted Location 1 Query Image 2 Predicted Location 2

Back of HandOuter WristPalm CenterInner Wrist

Inconsistent Touch Location

Palm Right Palm Up

Query Image 1 Predicted Location 1

Query Image 2 Predicted Location 2

Palm Right Palm Left

Correct Location 1

Palm Right

Correct Location 2

Palm Right

Within-Person Classification Experiment (n=30)



Lee Stearns, Uran Oh, Leah Findlater, Jon E. Froehlich, “TouchCam: Realtime Recognition of Location-Specific On-Body Gestures to 
Support Users with Visual Impairments," in Interactive, Wearable and Ubiquitous Technologies, December 2018.

ON-BODY STUDY II



OFFLINE PROTOTYPE



DATA COLLECTION 24 Sighted Participants
16 Female, 8 Male

Ages 19-51
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ON-BODY STUDY I

EXPERIMENTS AND RESULTS
Within-Person Classification Experiment (n=24)

Coarse-Grained Localization
(6 classes:    finger,    palm,    thigh, …)
accuracy: 98.0% (SD=2.3%)

Fine-Grained Localization
(15 classes:    palm up,    palm down, …)
accuracy: 88.7% (SD=7.0%)



ON-BODY STUDY I

EXPERIMENTS AND RESULTS
Within-Person Classification Experiment (n=24)

Coarse-Grained Localization
(6 classes:    finger,    palm,    thigh, …)
accuracy: 98.0% (SD=2.3%)

Fine-Grained Localization
(15 classes:    palm up,    palm down, …)
accuracy: 88.7% (SD=7.0%)

Location-Specific Gesture Recognition
(24 classes: 3 locations ⨉ 8 gestures)
accuracy: 95.7% (SD=3.2%)



Uran Oh, Lee Stearns, Alisha Pradhan, Jon E. Froehlich, Leah Findlater, “Investigating Microinteractions for People with Visual 
Impairments and the Potential Role of On-Body Interaction," in Proceedings of ASSETS 2017.

Lee Stearns, Uran Oh, Leah Findlater, Jon E. Froehlich, “TouchCam: Realtime Recognition of Location-Specific On-Body Gestures to 
Support Users with Visual Impairments," in Interactive, Wearable and Ubiquitous Technologies, December 2018.

ON-BODY STUDY III
12 Participants: 
7 female, 5 male

Ages 29-65
All blind or low vision



Algorithms
Real-time processing (~60fps)

• Removed geometric verification stage (required 1-2s per image)
• Combine predictions across 20 video frames (~300ms)
• Increase number of texture features per image from 1792 to 15,552
• Reduced number of fine-grained locations (removed 5 fingertip classes)

ON-BODY STUDY III



REALTIME PROTOTYPE



INTERFACE DESIGNS Five applications:
Clock, Daily Summary, Notifications, Health and Fitness, Voice Input

LI

LSpalm LSbody
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LI

LSpalm LSbody

FINDINGS (12 Visually Impaired Participants)
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5 participants



6 participants

5 participants

LI

LSpalm LSbody

FINDINGS (12 Visually Impaired Participants)



6 participants

5 participants

LI

LSpalm LSbody

FINDINGS (12 Visually Impaired Participants)
1 participant



On-body input method using finger-worn sensors
Mitigates camera framing issues
New types of contextual, location-specific gestures

Our findings demonstrate feasibility, with high 
accuracy and realtime performance

We identified tradeoffs that will impact the design of 
future on-body interfaces (e.g., accuracy, usability)

CONTRIBUTIONS



Reading/Exploring Text On-Body Input

HANDSIGHT APPLICATION AREAS



Reading/Exploring Text On-Body Input Clothing Colors/Patterns

HANDSIGHT APPLICATION AREAS



Alexander Medeiros, Lee Stearns, Leah Findlater, Chuan Chen, Jon E. Froehlich, “Recognizing Clothing Colors and Textures using a 
Finger-Mounted Camera: An Initial Investigation," in ASSETS 2017 (Poster Track).
Lee Stearns, Leah Findlater, Jon E. Froehlich, “Applying Transfer Learning to Recognize Clothing Patterns Using a Finger-Mounted 
Camera," in ASSETS 2018 (Poster Track, To Appear).

IDENTIFYING CLOTHING
COLORS AND PATTERNS



Colorino Color Identifier

Brytec Color Teller LedScope Android App

Microsoft SeeingAI App

COMMERCIAL COLOR RECOGNIZERS



Limitations:
Cannot recognize patterns, only color

Do not allow users to quickly inspect multiple locations

Accuracy affected by lighting and distance

COMMERCIAL COLOR RECOGNIZERS



Access Lens: S. Kane, et al., "Access lens: a gesture-based screen reader for real-world documents," in Proceedings of CHI 2013.

OTHER RELATED WORK



Magic Finger: X.D. Yang, et al., "Magic finger: always-available input through finger instrumentation," in Proceedings of UIST 2012.

OTHER RELATED WORK



X. Yang, et al., “Assistive Clothing Pattern Recognition for Visually Impaired People," in IEEE Trans. on Human-Machine Systems, 2014.

OTHER RELATED WORK



Advantages of HandSight:
Can recognize visual patterns as well as color

Constrains distance and lighting for consistent results

Allows for interactive exploration of colors and textures

IDENTIFYING CLOTHING
COLORS AND PATTERNS



Collected 520 images across 29 articles of clothing and 9 categories of pattern
Controlled and varied the distance (5cm vs. 12cm), rotation (0° vs. 45°), perspective
of the camera (90° vs. 45°), and the tension of the fabric (taut vs. hanging naturally)

Checkered Denim Floral Knitted Lacelike Polka-dotted Striped Zigzagged None

HANDSIGHT CLOTHING PATTERN
DATASET



Visual Texture Recognition Algorithms * Adapted from Cimpoi, et al., 2012

1. Deep convolutional activation features (DeCAF)
Adapt a pretrained object classifier from the ImageNet Large Scale Visual 
Recognition Challenge, removing last two layers used for classification and 
using the outputs as a raw feature vector (4096 DeCAF features).

PATTERN CLASSIFICATION
INITIAL EXPLORATION



Visual Texture Recognition Algorithms * Adapted from Cimpoi, et al., 2012

1. Deep convolutional activation features (DeCAF)
Adapt a pretrained object classifier from the ImageNet Large Scale Visual 
Recognition Challenge, removing last two layers used for classification and 
using the outputs as a raw feature vector (4096 DeCAF features).

2. Dense SIFT features combined in an Improved Fisher Vector (IFV)
Extract scale invariant features densely at multiple scales, then combine using the 
Improved Fisher Vector formulation. Results in a complementary set of features 
that captures important texture information (40,960 IFV features)

PATTERN CLASSIFICATION
INITIAL EXPLORATION

Visual Texture Recognition Algorithms * Adapted from Cimpoi, et al., 2012

1. Deep convolutional activation features (DeCAF)
Adapt a pretrained object classifier from the ImageNet Large Scale Visual 
Recognition Challenge, removing last two layers used for classification and 
using the outputs as a raw feature vector (4096 DeCAF features).
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Highly controlled dataset—risks overfitting, limits robustness

Training process not easily scalable

PATTERN CLASSIFICATION
INITIAL EXPLORATION



Solid Striped Checkered Dotted Zigzag Floral

Available online: https://github.com/lstearns86/clothing-pattern-dataset/

ONLINE CLOTHING PATTERN

DATASET
Built a larger and more varied dataset of images downloaded from Google Images
Focused only on fabric patterns that cannot easily be distinguished by touch



Built a larger and more varied dataset of images downloaded from Google Images
Focused only on fabric patterns that cannot easily be distinguished by touch
Downloaded top 1000 images for each category (e.g., “striped fabric”)
After removing erroneous results, duplicates, and cropping logos/backgrounds, 

contained 317–584 images per class (2764 total)

Solid Striped Checkered Dotted Zigzag Floral

Available online: https://github.com/lstearns86/clothing-pattern-dataset/

ONLINE CLOTHING PATTERN

DATASET



Synthetic variations: rotation (30° increments), scales (1–4, depending on resolution)
Final dataset: 8,232–17,304 samples per class, 77,052 total

Available online: https://github.com/lstearns86/clothing-pattern-dataset/

ONLINE CLOTHING PATTERN

DATASET



* Simplified visualization, actually 
used ResNet-101 architecture

Image from Andrej Karpathy’s “Convolutional Neural Networks for Visual Recognition” course, http://cs231n.github.io/convolutional-networks/



Randomly sampled 6400 images per class 
for training, and 1600 for testing

Validation: classification accuracy on the 
test set was 91.7%

Accuracy on HandSight dataset (400 
images) was 72.8%.

PATTERN CLASSIFICATION
AN END-TO-END DEEP LEARNING APPROACH



Randomly sampled 6400 images per class 
for training, and 1600 for testing

Validation: classification accuracy on the 
test set was 91.7%

Accuracy on HandSight dataset (400 
images) was 72.8%.

Fine-tuning the classifier with ~half of 
the HandSight images (N=36 per 
class) increases accuracy to 96.5%

Zigzag → Floral

Zigzag → Checkered

Striped → Checkered

Striped → Solid

PATTERN CLASSIFICATION
AN END-TO-END DEEP LEARNING APPROACH



Identify multiple colors in a single image

Two methods: K-means clustering and superpixel segmentation

ONGOING WORK
IDENTIFYING CLOTHING COLORS

Original k=2 k=4 Original Superpixels Color clusters



What is the best way to convey this 
information to users?

User-configurable level of detail:
Color names
Number of colors
Frequency of feedback

ONGOING WORK
IDENTIFYING CLOTHING COLORS



Two datasets of fabric pattern images
529 images collected systematically using HandSight.
77,052 images assembled from online sources and 
augmented synthetically (rotations, scaling, and cropping).

Preliminary algorithmic results demonstrating the feasibility 
of recognizing clothing patterns with a finger-worn camera.

CONTRIBUTIONS



Reading/Exploring Text On-Body Input Clothing Colors/Patterns

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS



ALTERNATIVE OR SUPPLEMENTARY CAMERA LOCATIONS

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS



Camera on the User’s Finger or Wrist Camera on the User’s Upper Body

Enables interactions anywhere the user can touch

Reduced issues with occlusion

Better resolution, more detail at the touch location

Simplified processing of content beneath finger

Easier to recognize relative gestures

Wider field of view, more contextual information

Easier to localize and track hand/finger position

Can use larger, higher-fidelity hardware

Less likely to interfere with motion or touch sensitivity

ALTERNATIVE OR SUPPLEMENTARY CAMERA LOCATIONS

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS



SPATIAL EXPLORATION OF DOCUMENTS AND OTHER SURFACES

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS



SPATIAL EXPLORATION OF DOCUMENTS AND OTHER SURFACES
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SPATIAL EXPLORATION OF DOCUMENTS AND OTHER SURFACES

CONCLUSIONS
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ALTERNATIVE FEEDBACK METHODS

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS

TeslaTouch, Xu et al. 2011



ALTERNATIVE FEEDBACK METHODS

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS

Flexible Tactile Display, Choi et al. 2004



ALTERNATIVE FEEDBACK METHODS

CONCLUSIONS
AND FUTURE RESEARCH DIRECTIONS

SMP Haptic Display, Besse et al. 2017



EXTENSIONS TO OTHER USER POPULATIONS
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EXTENSIONS TO OTHER USER POPULATIONS
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EXTENSIONS TO OTHER USER POPULATIONS
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