

Our vision is to create a learning platform where children can use their body to build scientific inquiry skills

Wearable activity trackers and visualizations helped engage children in scientific inquiry.

Lee et al. (2015, 2009)

Wearable activity trackers and visualizations helped engage children in scientific inquiry.

Lee et al. (2015, 2009)

limited to using offline data, and having physical activity and learning separated.

Research Questions

How do children interact and collaborate with real-time & shared body data?

earch Questions

What aspects of designs and activities could promote inquiry and engagement?

Heart Rate

Breathing Rate

DESIGN PROCESS Participatory Design

A formative design activity with experienced teachers to develop practical learning experiences

20 elementary school teachers

3 separate sessions, 2.5 hours

Scientific Inquiry Activity

Crosscutting Concepts in Science The Form and Function of Human Body

DESIGN PROCESS Pilot Study - Testing Technology

DESIGN PROCESS Pilot Study - Developing Learning Activities

PROTOTUPE #1 Magic Mirror PROTOTYPE #2 Moving Graphs

PROTOTYPE #3 Animal Avatar

Prototype #1 Magic Mirror

PROTOTYPE #1: MAGIC MIRROR Design Goals

- 🏽 Mirror paradigm
- 🏼 Peer inside live body
- Whole-body interaction

PROTOTYPE #1: MAGIC MIRROR How It Works

PROTOTYPE #2 Moving Graphs

PROTOTYPE #2: MOVING GRAPHS Design Goals

PROTOTYPE #2: MOVING GRAPHS How It Works

PROTOTYPE #2: MOVING GRAPHS Hypothesis Generation Which activity makes our heart beat faster? 0 How can we make our heart beat slow? Player Player Rep Reporter Reporter Player Player Reporter Reporter

Reporter Player

PROTOTYPE #2: MOVING GRAPHS Hypothesis Testing

PROTOTYPE #2 Moving Graphs

PROTOTYPE #3: ANIMAL AVATAR Design Goals

- Observation & Discovery
- 🗑 Comparison & Contrast
- Cross-species Biology

PROTOTYPE #3: ANIMAL AVATAR How It Works

PROTOTYPE #3: ANIMAL AVATAR How It Works

PROTOTYPE #3: ANIMAL AVATAR Discovering Similarity and Difference

Qualitative exploration and soliciting feedback

EVALUATION

Recruitment

rear hereisten at de astronomien at dealers at dealers at dealers at dealers at de astronomien at dealers de at

EVALUATION

and the assistance of the assistance from assistance from a superstance of the assistance of the assis

eliker metrika merekanaliker artiska merekanaliker metrika s

Pre&post-activitiy questionnaires

Video recordings

Program staff interview

EVALUATION

and the article and second the article and the article and second the article and second the article artic

Analysis

Researchers independently analyzed the data, iterating on codebook

Design Preference 41%

it is cool seeing how fast or slow you would breathe as an animal

Design Preference, Animal Avatar (3rd)

Design Preference 41% 35% 24% Children prefer designs with higher physical activity 28.479 RESPIRATOR CIRCULATORY austin as an Elephan 60 60 3 danne ٩ -Animal Avatar Moving Graphs Magic Mirror

Players interact non-verbally by physical interaction and data comparison

Reporters were vocal in interacting with players, shouting suggestion and encouragement

Reporters were vocal in interacting with players, shouting suggestion and encouragement

Learning Potential

makeability lab

Pre-Activity Questionnaire

2. Now draw all of the organs and body parts you can think of that are part of the

circulatory system (the system that helps blood move around your body). Draw each

body part the way you think they look. Be as specific as you can. Please label each

makeability lab

Post-Activity Questionnaire

6. Now draw all of the organs and body parts you can think of that are part of the circulatory system (the system that helps blood move around your body). Draw each body part the way you think they look. Be as specific as you can. Please label each organ with the name and function.

Learning Potential

makeability lab

Pre-Activity Questionnaire

makeability lab

Post-Activity Questionnaire

2. Now draw all of the organs and body parts you can think of that are part of the **circulatory system** (the system that helps blood move around your body). Draw eabody part the way you think they look. Be as specific as you can. Please **label each organ** with the **name** and **function**.

6. Now draw all of the organs and body parts you can think of that are part of the circulatory system (the system that helps blood move around your body). Draw each body part the way you think they look. Be as specific as you can. Please label each organ with the name and function.

Learning Potential

66% of the participants increased their body-map scores

29% of the participants improved on body-system questions

Authentic connection between body data and visualization

Program staff feedback

it's one thing to show a picture of the respiratory system, it's another thing to have them see their own

The importance of physicality and mimicry

Program staff feedback

the cause and effect relationship, the interactivity...All those things make much more personal education

Making STEM learning relevant and fun

Discussion

 NO difference in engagement and learning between wearers and non-wearer

 Non-verbal communication afforded by shared environment \$ physical interaction

 In situ body data collecting, hypothesis testing, and analysis engaged children in scientific inquiry activity

Summary

SharedPhys maps out and probe design space for

1) mixed-reality environments to support embodied interaction and learning

2) body-centric technology for inquiry activity.

Our results suggest benefits in

tight coupling between action and visualizations
social interactions afforded by shared environment
interplay between wearers and non-wearers

Thank You