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mandates that new constructions and
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are to be
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million U.S. adults with
mobility impairment
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million use an assistive
mobility aid



Missing Curb Ramp Obstacle

—w*_"‘r

Meyers et a/[Soc. Sci. & Med. 2002], Rimmer et a/. [AJPM 2004],



The problem is also that there are few mechanisms to
determine accessible areas of a city a priori



The National Council on Disability noted that there is no
comprehensive information on "the degree to-which
sidewalks are accessible” in cities.

National Council on Disability, 2007
The impact of the Americans with Disabilities Act: Assessing the progress toward
achieving the goals of the ADA
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Address Search
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Accessibility-aware Navigation

1t of 3 Suggested Routes

16 minutes, 0.7 miles, 1 obstacle

15t of 3 Suggested Routes

16 minutes, 0.7 miles, 1 obstacle

GJQWA Route 2

Pey,
Y £r
Ny
Ta6y w

La Molienda

Surface Problem
Avg Severity: 3.6 (Hard to Pass)

Recent Comments:
“Obstacle is passable in a manual chair
but not in a motorized chair”

Oak St Ny Wi Oak St N

Routing for: Manual Wheelchair Routing for: Manual Wheelchair
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Our vision is to design methods to
* scalably collect street-level
accessibility data that enables
technologies that support mobility
| impaired people to navigate the
phyS|ca| enwronment




Background

Tradltlonal Walkablllty Audlts

Walkability Audit Walkability Audit Safe Routes to School Walkability Audit
Wake County, North Carolina Wake County, North Carolina Rock Hill, South Carolina



Background

1. Did you have room to walk? 4. Was it easy to follow safety rules?
mp Some p s Could you and your child.
) - )

[¢ at exc

Time consuming,
expensive, and
requires on-site audit

How does your neighborhood stack up?
Add up your ratings and decide.

Now that you've identified the problems,
go to the next page to find out how to fix them.




Background

Mobile Reporting Solutions

-

NYC

N

| @ NYC Today
[J Complaints (1)
M Alerts
L My Contact Info
« Customer Survey

o0 More

Make a Complaint

A

X Select Complaint

[ d
_R_ Broken Sidewalk
r Y

N

http://www1.nyc.gov/311/index.page



Background

Mobile Reporting Solutions

X Select Complaint

o
_R_ Broken Sidewalk
i,

ﬁ- Fire Hydrant

TREES & PARKS

} Damaged Tree

New Tree




Similar to physical audits, these tools are built for /n situ
reporting and do not support remote, virtual inquiry—
which limits scalability

Not designed for accessibility data collection



Background

sible Businesses

imaporg

wheelmap.org

Mark & Find Acces

AXSward,

search for accessible spots

? - 9 * N B

find, rate, and
share accessible
places

amazingly simple to use. on web and mobile.

find rate

share

axsmap.com

Focuses on businesses
rather than
streets/sidewalks

Model is still to report
on places you've visited



Our Approach: Remotely collect street-level accessibility information from
Google Street View (GSV) using:crowdsourcing and computation

o o R
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Labeling Interface

Early Work




Labeling Interface

Early Work




0,0
ma® Crowdsourced Data Accuracy

We could collect street-level accessibility data from static
Google Street View using crowdsourcing with 81% accuracy
and this figure went up to 93% with majority voting

Hara K., Le V., Froehlich J.E. [ASSETS 2012]; Hara K., Le V., Froehlich J.E. [CHI 2013]
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e reliance on paid-crowdsourcing
its the method’s scalability



Scalable Data Collection Methods

B |

Semi-automated
Data Collection



New York Boston Chicago Detroit Philadelphia About FAQ Data

Union City
r

P East Side

Rélated Work: Quantifying Neighborhood Environment

Using Computer Vision
[Arietta, S. et a/ 2014, Naik, N. ef d, 2014, Querciay-Dretal 2014]

Hoboken

New York
Jersey City

Tribeca Lower East Side

Map data copyright OpenStre min S y perceived salety max

Street Score b Nik et al.



New York Boston Chicago Detroit Philadelphia About FAQ Data

Union City
r

P East Side

Rélated Work: Quantifying Neighborhood Environment

Using Computer Vision
[Arietta, S. et a/ 2014, Naik, N. ef d, 2014, Querciay-Dretal 2014]

Hoboken

New York
Jersey City

Tribeca Lower East Side

Map data copyright OpenStre min S y perceived salety max

Street Score b Nik et al.



Related Work: Quantifying Neighborhood Environment

Using Computer Vision
[Arietta, S. et a/ 2014, Naik, N. et d, 2014, Quercia, D. et a/ 2014]

We need more granular information to understand
which sidewalks are accessible/inaccessible and why

Street Score by Naik, N et al.



Related Work: Object Detection with Human-in-the-Loop

Branson et a/. 2010, Quinn et 4. 2010; Su et a/. 2012
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Visual Recognition with Humans i

Steve Branson', Catherine Wah', Florian Schroff', Bor
Welinder?, Pietro Perona®, and Serge Beld

! University of California, San Diego

{sbranson, cwah, gschroff, bbabenko, sjb}@cs.
2 California Institute of Technology
{welinder,peronal@caltech.edun

Abstract. We present an interactive, hybrid human-
for object classification. The method applies to classes
recognizable by people with appropriate expertise (e.g
airplane model), but not (in general) by people withou
can be seen as a visual version of the 20 guestions gan
based on simple vis attributes are posed interactiy
identify the true class while minimizing the number |
il content of the image. We introduce a

using the vis
for incorporating almost any off-the-shelf multi-class
algorithm into the visual 20 questions game, and pro
to account for imperfect user responses and unrelial
algorithms. We evaluate our methods on Birds-200
of 200 tightly-related bird species, and on the Anim
dataset. Our results demonstrate that incorporating
recognition accuracy to levels that are good enough
catlons, while at the same time, computer vision rey
human interaction required.

Crowdsourcing Annotations for Visual Object Detection

Hao Su, Jia Deng, Lj Fei-pei
) Su, g, Li Fei-Fei
Computer Science Department, Stanford University

Abstract
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Object detection js one of the fundamenta tasks of visual

Figure 1: An example i
“bottle” category, le of bounding box annotations for the
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9 algorithms with certgj nty what is not the object. ©
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Related Work: Object Detection with Human-in-the-Loop

R A Some objects never
. gets labeled if the

algorithm misses

| §

Task: Detect all the bottles

Step 1: An object detection algorithm detects bottles
Step 2: Humans verify the object detection outputs

More accurate compared to computer vision alone ana
cheaper than human labeling



Adaptive Workflow for Optimizing Efficiency

Varying the number of workers to recruit 'I' 'M"I'
depending on task difficulty >

[Kamar et al 2012; Welinder and Perona 2010] Easy Hard
@

Assigning stronger workers to harder tasks 'I' III

[Dai et al 2011] s oy

Reducing the tasks that require human work

[Deng et a/ 2014; Jain, Grauman, and Betke 2016] Task —Faske Task Task —Fask-

Changing task interface based on worker characteristics
[Jain and Grauman 2013, Lin et a/. 2012, Russakovsky ef a/ 2015]

Interfacel | or | Interface 2




Tohme

1= B-Remote Eye

Hara K., Sun J., Chazan J., Jacobs D., Froehlich J.E. [HCOMP 2013]; Hara K., Sun J., Moore R., Jacobs D., Froehlich J.E. [UIST 2014]



9 The National Mall
> Smilthsonlan Muteums
€ Shakerpeare Theatre




Without curb cuts, people with ambulatory
disabilities simply cannot navigate the city.

Kinney v. Yerusalim, 1993
3rd Circuit, Court of Appeals



Curb Ramps are Visually Salient




svCrawl
Web Scraper

e

Dataset




svCrawl
Web Scraper

e

3D Depth Map

GIS Metadata (e.g., topological data)
Top down map images

Street View images

Dataset




svCrawl
Web Scraper

svDetect
Automatic Curb

Ramp Detection

Dataset



svCrawl
Web Scraper

svDetect
Automatic Curb

Ramp Detection

Dataset

Did our computer vision
algorithm perform well?

svControl
Automatic
Task Allocation



svCrawl
Web Scraper
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svDetect
Automatic Curb
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svControl
Automatic
Task Allocation
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Manual Label
Verification



svCrawl
Web Scraper

Dataset

svDetect
Automatic Curb

Ramp Detection

svControl
Automatic
Task Allocation

svLabel
Manual Labeling

svVerify
Manual Label
Verification




How do we define
detection computer vision failure?
; i

False positive detections

False Negative Error = Computer Vision Failure
Because asking humans to label missed curb ramps
is much more expensive than asking to verify
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A feature vector used to in
the workflow controller

Complexity: 0.14
Cardinality: 0.33
Depth: 0.21
CV: 0.22



Complexity:
Cardinality: 0.33
Depth: 0.21

CV: 0.22



Y
"




Y

iy

)
@:



Complexit;/

L 082
Cardinality:
Depth:

CV:

0.25
0.96

0.54
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svCrawl svDetect Is\>|/Labe|| Labeli
Web Scraper Automatic Curb anual Labeling

Ramp Detection

N\

svControl svVerify
Automatic Manual Label
Dataset Task Allocation Verification
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& Scraper

Street View Images

T

We collected images from intersections
because that's where we find curb ramps



& Scraper

Street View Images

Point-cloud Data




& Scraper

Street View Images

yawDeg: "118
panold:
road_arghb:

Point-cloud Data ~ description:

yawDeg:
panold:

Metadata o pan d_ﬁrgl:a;.
(e.g., street topology) : description:




& Scraper

Street View Images

Point-cloud Data

Metadata
(e.g., street topology)

Top-down Google
Maps Imagery




& Scraper

Street View Images

Point-cloud Data

' Used to train curb ramp detector

Metadata and workflow controller

(e.g., street topology)

Top-down Google
Maps Imagery




& Scraper

Street View Images

Point-cloud Data

Metadata t :
(eg., street topology) :

pe: "spherical”,

Top-down Google
Maps Imagery
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Dataset

.
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Dataset

Ground Truth Curb Ramp Dataset

2 researchers labeled curb ramps in our dataset

2,877 curb ramp labels (Avg.=2.6 per intersection)
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svDetect
Automatic Curb

Ramp Detection




Automatic Curb Ramp Detection

1. Curb ramp detection with Deformable Part Model
2. Post-processing to filter out errors

3. SVM-based classification for output refinement



Automatic Curb Ramp Detection

. AN Deformable Part Models
17 Felzenszwalb et al. 2008
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Automatic Curb Ramp Detection

Deformable Part Models

Felzenszwalb et al. 2008
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Root filter Parts filter Displacement cost

http://www.cs.berkeley.edu/~rbg/latent/



Automatic Curb Ramp Detection




Automatic Curb Ramp Detection

Detected Labels
Stage 1: Deformable Part Model

Sliding window detection with deformable part model

Multiple redundant -
detection boxes

e 4

Correct 1
False Positive 12
Miss O




Automatic Curb Ramp Detection

Detected Labels .
Stage 1: Deformable Part Model

Sliding window detection with deformable part model

W

B Curb ramps shouldn't be in
Y4 the sky or on roofs

Correct 1
False Positive 12
Miss O



K= Automatic Curb Ramp Detection

Detected Labels

Stage 2: Post-processing

Rejects errors using 3D data and applies non-maxima suppression

B WP s e T



K= Automatic Curb Ramp Detection

Detected Labels
Stage 2: Post-processing

Rejects errors using 3D data and applies non-maxima suppression

Correct
False Positive
Miss O




Automatic Curb Ramp Detection

Detected Labels
Stage 3: SVM-based Refinement

Takes size, color, and position and further filters out false detections
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- a1 ;‘
‘e " T, Ay
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N e filter out labels based on

e

their size, color, and position.

Correct
False Positive
Miss O




Automatic Curb Ramp Detection

Detected Labels
Stage 3: SVM-based Refinement

Takes size, color, and position and further filters out false detections

. WX

Correct
False Positive
Miss O
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Automatic Curb Ramp Detection

Detected Labels
Stage 1: Deformable Part Model

Sliding window detection with deformable part model

Correct 6
False Positive 11
Miss 1
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Automatic Curb Ramp Detection

Detected Labels
Stage 2: Post-processing

Rejects errors using 3D data and applies non-maxima suppression

Correct 6
False Positive 6
Miss 1



Automatic Curb Ramp Detection

Detected Labels
Stage 3: SVM-based Refinement

Takes size, color, and position and further filters out false detections

Correct 6
False Positive 4
Miss 1



Automatic Curb Ramp Detection Accuracy

Used two-fold cross validation to evaluate CV sub-system



Precision (%)

100%

80%

60%

40%

20%

0%

COMPUTER VISION SUB-SYSTEM RESULTS

Precision

Higher, less false positives

Recall
Higher, less false negatives

0% 20%

40% 60% 80%

Recall (%)

\%

100%



Precision (%)

COMPUTER VISION SUB-SYSTEM RESULTS
100%

80%

60%

~_ Goal: maximize

40%

20%

0%
0% 20% 40% 60% 80% 100%

Recall (%)

area under curve



Precision (%)

COMPUTER VISION SUB-SYSTEM RESULTS
100%

AUCStage1 - 0.48
80% AUCStageZ - 0.50

AUCStage3 - 0.53

60%

More than 20% of
a0 curb ramps were missed

== Stage 1: DPM
== Stage 2: Post-processing
== Stage 3: SVM

20%

S —
0%
0% 20% 40% 60% 80% 100%

Recall (%)



Precision (%)

COMPUTER VISION SUB-SYSTEM RESULTS
100%

- "\ Pr, Re = 84%, 88%

60%

40%

20%

0%
0% 20% 40% 60% 80% 100%

Recall (%)

1 turker

Computer vision alone is
not sufficient to accurately
find curb ramps

== Stage 1: DPM
== Stage 2: Post-processing
== Stage 3: SVM



Curb Ramp Detection is a Hard Problem

Occlusion
it | 1
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Occlusion




Curb Ramp Detection is a Hard Problem

Occlusion [llumination
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lllumination




Curb Ramp Detection is a Hard Problem

Occlusion [llumination
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Scale




Curb Ramp Detection is a Hard Problem

Occlusion




View Point Variation




Curb Ramp Detection is a Hard Problem

Occlusion Illummatlon




Structures Similar to Curb Ramps




Curb Ramp Detection is a Hard Problem

Occlusion




Curb Ramp Design Variation




svControl
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Task Allocation




< Automatic Task Allocation | Features to Assess Scene Difficulty for CV
A number of streets from metadata

S 11.\\w9‘-////—l‘ti\\\\‘§4‘ =77
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< Automatic Task Allocation | Features to Assess Scene Difficulty for CV

Depth information for a road width and variance in distance




< Automatic Task Allocation | Features to Assess Scene Difficulty for CV

Depth information for a road width and variance in distance

Finding curb ramps on distant sidewalks is
difficult; they look smaller (i.e., scaling issue)



< Automatic Task Allocation | Features to Assess Scene Difficulty for CV

Top-down images to assess complexity of an intersection




< Automatic Task Allocation | Features to Assess Scene Difficulty for CV

14
Washington
Monument [
& Museum

Google Maps Styled Maps

As a proxy for intersection complexity, we count the number of black :
more black pixels = more complex intersection
(7.e, more viewpoint variation)



< Automatic Task Allocation | Features to Assess Scene Difficulty for CV




< Binary Classification
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svLabel
Manual Labeling
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svControl
Automatic
Task Allocation




2" Manual Labeling | Labeling Interface

Explore

d and label the following

& 4 &/

-

CurbRamp = Massing Curb .
Ramp Zoom In

Status

Mission:

Your mission is to find and label
the presence and absence of curb
ramps at intersections.

Progress:
You have finished 0 out of 5

L ]

Labeled Landmarks:
& & 0

You've submittec 0 curb ramp labels ang

0 missing curb ramp labeks

' Al Keyboard Shortcuts:

ESC: Cancel drawing
Z / Shift+ Z: Zoom in / Zoor

Observed arca:

'V

SOvE

X



2./ Manual Labeling | Interactive Tutorial

Help Us Improve Street Accessibility

Hi, we're exploring new ways to find accessibility problems in cities, and we need your help! In this task,
your mission is to label curb ramps and missing curb ramps in Google Street View. Curb ramps
are very important--without them, people in wheelchairs cannot move about the city.

A lack of a curb ramp at this comer obstruct wheelchair
users from getting on and off the sidewalk.

We'll begin with a short, interactive tutorial to get you started! Thanks for your help in improving the
accessibility of cities.




2 Manual Labeling | Golden Insertion

Find and labe! the following Status
6» J &1 / Mission:
Eskore el L s (O] Q ) ™~ Your mission Is to find and label
U 0 S| ur 2
& R.;-np ZoomIn Z unco the presence and absence of curb

ramps at intersections.

Progress:
You have finished 0 out of 5.

Labeled Landmarks:
& &/ o

You've submitted 0 curb ramp labek ang
0 missing curb ramp abek

Keyboard Shortcuts:
ESC: Cancel drawing
Z / Shift+ Z: Zoom in / Zoom out

Ob§erverd area:




svLabel
Manual Labeling
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sv\Verify
Manual Label
Verification




@, Manual Label Verification

Universty of Manylangd

Status

Mission:

Your mission is to verify the
presence of curb ramps at
intersactions.

Progress:
You have firished 0 out of 1

r ]

Labeled Curb Ramps:

&S/ 11

-

Keyboard Shortcuts:
Arrow Keys Navgste
Z Zoom in
Shift+Z Zoom out

The area of the scene you have
observed:

'V

Joo0gle
(oogie

X



@, Manual Label Verification

Universty of Manylangd

Status

Mission:

Your mission is to verify the
presence of curb ramps at
intersactions.

Progress:
You have firished 0 out of 1

r ]

Labeled Curb Ramps:

&S/ 11

-

Keyboard Shortcuts:
Arrow Keys Navgste
Z Zoom in
Shift+Z Zoom out

The area of the scene you have
observed:

'V

Joo0gle
(oogie

X



4l Evaluation

Study Method: Conditions

i/ VS. F &@ . Tohme
1= B - Remote Eye

Manual labeling without CV + Verification without
smart task allocation smart task allocation



Al Evaluation

Study Method: Measures

—_—

Accuracy Task Completion Time




4l Evaluation

Study Method: Approach

We recruited workers from Amazon Mechanical Turk to
work on labeling tasks and verification tasks

We used 1,046 GSV images



4l Evaluation

I ] A

Labeling Tasks Verification Tasks

# of distinct turkers: 247 161
# of tasks completed: 6,350 4,820

We evaluated the result with Monte Carlo simulation



all Evaluation | Labeling Accuracy and Time Cost

| . L
Higher s ACCURACY < Lot CosT (TIME)
better
100% 100
o
9 80% § 80
T (Vg)]
GL) ~
S 60% £ 60
© =
> 5
> 40% © 40
S ko
o o
S g
< 20% I 20
V4
RS

0% 0
0&0_/ 84,  Tohme oﬁo_/ 29 Tohme

Manual CV and Manual  #&B-Remote Eye Manual CV and Manual ;&B-Remote Eye
Labeling Verification Labeling Verification

Error bars are standard deviations.



all Evaluation | Labeling Accuracy and Time Cost

M Precision
100%
849 07086%
§ 80%
s
L
2 60%
@O
()
=
> 40%
o
-}
|9}
(@)
< 20%
. 2
Manual
Labeling

ACCURACY
W Recall " F-measure
839,86% 84%
68%
| 63% ‘ | |
Tohme

CV and Manual
Verification

Error bars are standard deviations.

& B+ Remote Eye

Task Completion Time / Scene (s)
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all Evaluation | Labeling Accuracy and Time Cost

ACCURACY
M Precision m Recall " F-measure
100%
8495070 86% 839, 86% 84%
~ 80%
o
> 68%
§ 63%
2 060%
@O
()
>
> 40%
©
-}
|9}
(@)
< 20%
0%
oi,,/ Tohme
Manual CV and I\/Ianual & B Remote Eye
Labeling Verification

Error bars are standard deviations.

Task Completion Time / Scene (s)

100

(0¢]
O

D
(@)

N
)

N
O

94

CosT (TIME)

Manual
Labeling

13% reduction
In cost

CV and Manual
Verification

@

Tohme
SEB-Remote Eye






l, Evaluation | Example Labels from Manual Labeling

| %T_‘_ Fedi:Office &




l, Evaluation | Example Labels from Manual Labeling
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L, Evaluation | Example Labels from Manual Labeling
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.l Evaluation | Example Labels from Manual Labeling

-




This is a driveway.
Not a curb ramp.




L, Evaluation | Example Labels from Manual Labeling
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L, Evaluation | Example Labels from Manual Labeling
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@\Examples Labels from CV + Verification




.l Evaluation | Example Labels from CV + Verification
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Raw Street View Image
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..Il Evaluann | Example Labels from CV + Verification




..Il Evaluann | Example Labels from CV + \/erlﬂcatlon




'i' + ‘ﬁ’ Summary

We developed a method that combines
crowdsourcing and computation that increased

accessibility data collection efficiency without
losing accuracy



Chevy Chase
Spnngs 8 Sect:on Five
cthesds
Chevy Chase
Cropley

| Back of Envelope Calculation

S How long would it take to audit a city?

D al Sreet Distance: 1,238 mi cud
| think we can do
Audit Speed 7 9 mi / hour % | better than this ©

; EsUmated Total T|me cost: 157 hour ($1 1k)

fl Estimated Total Time-cost with automation: 137 hour

I Mantua




Future Work: Imprlfix;ing Detection Accuracy

Context integration & scene understanding-—
Using 3D-data for mensuration r




features like constructions?

B

Urthecast



ﬂ i@ E Mission:
e Bus Stop Sigr 5us Stor find and label

Future Work Research Beyond Sidewalk Acce55|b|I|ty
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Urban vegetation &

Public health (e.g., cleanliness)

-
b —

Urban planning (e.g., bicycle roads)
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Hara ef a/ [ASSETS 2013, TACCESS 2015]



. . rie OR P/ Chillum
Access Score,.., in Action Height ‘
Find out about neighborhood accessibility of DC! Here, N Hyattsvill
accessible neighborhoods are colored in green and
inaccessible neighborhoods are colored in red.

If some accessibility features affect your mobiliy more
than the others, use the slider below to adjust the EapFTCA L
significance of each accessibility feature!
WRBe
77777777777777777777777 el :: nip St e LO¢6 IR{ KENILWOFTH
Access Score for some neighbro_rhoovds (yet). Wanna GEORG RINID/ MAYPAIR
help us improve it? HINATOWN ‘ >
p —Yf—‘-. el €
Significance Al’ll ngtOﬂ =

Curb Ramp 100 i
<er Wil

No Curb Ramp { 100

Obstacle . 100

Surface Problem () 100

H
r

__Future Work: Application Development ...

sidewalk.umiacs.umd.edu/demo
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