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Our Mission









Physical & Behavioral 
Phenomena

Sensing

New Interactive Experiences

Signal Processing





[CHI’15] [ACVR’14, ASSETS’15, GI’16, TACCESS’16] [ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, 
TACCESS’15, SIGACCESS’15, CHI’16] 



[CHI’15] 

How can we… 
we sense & visualize sound information on 

an HMD to improve sound awareness for 

people who are deaf or hard of hearing?











True wearable design

Precise localization & sound 

separation algorithms

Oral conversation support

Visualization design

Collaborators: Leah Findlater, Ramani Duraiswami, Dmitry Zotkin, Christian Vogler, & Raja Kushalnager
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[CHI’15] [ACVR’14, ASSETS’15, GI’16, TACCESS’16] [ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, 
TACCESS’15, SIGACCESS’15, CHI’16] 



[ACVR’14, ASSETS’15, GI’16, TACCESS’16] 

How can we… 
we sense & feed back non-tactile 

information about the physical world 

as it is touched?

[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, 
TACCESS’15, SIGACCESS’15, CHI’16] 



For people with visual impairments, touch is a primary 

means of acquiring information about the world.

Prior work in neuroscience and psychoperception has 

found that blindness enhances tactile acuity (e.g., Goldreich

& Kanics, 2003; Norman & Bartholomew, 2011)

However, fingers can only feel tactile phenomena—bumps, 

temperature, shape—and there is much richness in the 

world that is non-tactile.

In our work, we are exploring:
How to computationally augment a blind person’s sense of 
touch to interpret non-tactile information about the world?



Imagine, for example, gliding your finger along printed text 

and hearing the words read back to you in real-time,
feeling the shape of a bar graph in a book or newspaper,
or touching a piece of clothing and hearing a description 

of the underlying fabric 



Sensing + feedback for non-

tactile information about the 

physical world as it is touched









For processing, power, 
additional sensing & feedback



[ACVR’14, TACCESS’15] In progress [ICPR’16] [TACCESS’15, GI’16]









TACCESS’16



TACCESS’16



TACCESS’16

Absolute error from line center

Absolute error from line center

Z19=-2.374, p=.018, r=.54



GI’16



Arduino Mega 

+ BLE Shield

Vibro-motor

Android tablet





GI’16

Directional movement error

t17=−1.95, p = .034, d = 0.46 

Directional movement error



In progress

Start

End

Red & green show 
user’s finger trace

Start

End



ICPR’16, two papers in submission
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[CHI’15] [ACVR’14, ASSETS’15, GI’16, TACCESS’16] [ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, 
TACCESS’15, SIGACCESS’15, CHI’16] 



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, 
TACCESS’15, SIGACCESS’15, CHI’16] 

How can we… 
develop scalable solutions that map the 

accessibility of urban infrastructure?



million U.S. adults 
have a mobility impairment

Source: US Census, 210



million use an assistive aid

Source: US Census, 210















Accessible infrastructure 

has a significant impact 

on the independence

and mobility of citizens
[Thapar et al., 2004 ; Nuernberger, 2008] 







The National Council on Disability noted that 

there is no comprehensive information on 

“the degree to which sidewalks are 

accessible” in cities.

National Council on Disability, 2007

The impact of the Americans with Disabilities Act: Assessing 

the progress toward achieving the goals of the ADA 



We are pursuing a two-fold solution



To develop scalable methods that mine massive repositories of online map 
imagery to identify accessibility problems semi-automatically



To create new accessibility-aware mapping tools that support people with 
disabilities and provide unprecedented views of urban accessibility



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] [SIGACCESS ‘15, CHI’16]



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to 

find accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?



Jon Froehlich David Jacobs Kotaro Hara Manaswi Saha Jin Sun Ladan Najafizadeh Soheil Behnezhad

Vicki Le Robert Moore Christine Chan Daniil Zadorozhnyy Zach Lawrence Alex Zhang

Jonah Chazan Anthony Li Niles Rogoff

Maria Furman



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to 

find accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?



Washington DC & Seattle | 42 km surveyed Washington DC & Baltimore | 34 km surveyed







vs. vs.

ρ=
All results statistically significant at p < 0.001

ρ=





See: Odgers et al., 2012; Wilson et al., 2013; Kelly et al., 2013; Bader, et al., 2017



Google Street View is a reasonable proxy for 

studying the state of street-level accessibility



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to 

find accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?





1. Find & label problem



1. Find & label problem



1. Find & label problem
2. Categorize problem



1. Find & label problem
2. Categorize problem



1. Find & label problem
2. Categorize problem
3. Rate problem severity



1. Find & label problem
2. Categorize problem
3. Rate problem severity



1. Find & label problem
2. Categorize problem
3. Rate problem severity
4. Submit work



1. Find & label problem
2. Categorize problem
3. Rate problem severity
4. Submit work

Receive another image to 
label & process repeats.



1. Verify label



1. Verify label



1. Verify label
2. Verify rating



1. Verify label
2. Verify rating
3. Provide details



1. Verify label
2. Verify rating
3. Provide details

Check for false negatives



1. Verify label
2. Verify rating
3. Provide details

Check for false negatives
Verify multiple labels/scene



1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd

4. Compare performance to ground truth



Baltimore





Sidewalk Ending

Object in Path

Surface Problems

Missing Curb Ramps

No Problems



1. Create image dataset

2. Generate ground truth labels



Bob Sue Alice

Object in Path

Object in Path

No Curb Ramp

Bob’s Labels

Object in Path

Object in Path

Sue’s Labels

Object in Path

Object in Path

No Curb Ramp

Alice’s Labels

Object in Path

Object in Path

No Curb Ramp
}

Majority 
Vote

Researcher Ground Truth



Bob Sue Alice

Object in Path

Object in Path

No Curb Ramp
}

Majority 
Vote

Researcher Ground Truth

Object in Path

Object in Path

No Curb Ramp
}

Majority 
Vote

Wheelchair User Ground Truth
Tom Sarah Jim



1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd







185 turkers
7,517 image labeling tasks (AVG=40.6/turker)

13,379 labels (AVG=1.8/image)

273 turkers
19,189 verifications (AVG=70.2/turker)





1. Create image dataset

2. Generate ground truth labels

3. Deploy our tools to crowd

4. Compare performance to ground truth



With one labeler per image



With one labeler per image

78% 81%

Multiclass Overall Binary Overall
Sidewalk Ending

No Curb Ramp

Surface Problem

Object in Path

No Problem

No Problem

Problem



(i.e., tendency towards false positives) (e.g., misunderstanding, malevolence) (i.e., ambiguous problem category)
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87% 87% 88%
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Error bars: standard error

1 labeler 3 labelers
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7 labelers
(majority vote)

9 labelers
(majority vote)

Multiclass
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Error bars: standard error

1 labeler 1 labeler,
3 verifiers

3 labelers 3 labelers,
3 verifiers

5 labelers

Multiclass Binary



But this approach relied purely manual labor. 

Can we do better?



[ASSETS’12, CHI’13, HCOMP’13, ASSETS’13, UIST’14, TACCESS’15] 

Is online map imagery a good 

source for accessibility data?

Can we create interactive tools 

that enable crowd workers to 

find accessibility problems?

How can we leverage 

computational techniques to 

scale our approach?



Tohme
遠目 Remote Eye・



遠目Remote Eye

svCrawl

Web Scraper



遠目Remote Eye

svCrawl

Web Scraper

Street Dataset

Google Street View Panoramas

3D Point-cloud Data

Top-down Google Maps Imagery

GIS Metadata
<Latitude & longitude/>

<GSV image age/>

<Street & city names/>

<Intersection topology/>

Street View images
3D-depth maps
Top-down map images
GIS metadata

Scraped Area: 11.3 km2
Urban Residential



遠目Remote Eye

svCrawl

Web Scraper

Street Dataset

Street View images
3D-depth maps
Top-down map images
GIS metadata

<Intersection topology/>

Scraped Area: 11.3 km2

D.C. Baltimore Los Angeles Saskatoon

Urban Residential

1,086
intersections

2,877
curb ramps

647
missing 

curb ramps

Dataset Statistics

2.2 yrs (SD=1.3)

average GSV image age



遠目Remote Eye

svCrawl

Web Scraper

svDetect

Automatic Curb 

Ramp Detection

Street Dataset

Street View images
3D-depth maps
Top-down map images
GIS metadata



遠目Remote Eye

svCrawl

Web Scraper

svDetect

Automatic Curb 

Ramp Detection

Street Dataset

Street View images
3D-depth maps
Top-down map images
GIS metadata



遠目Remote Eye

svCrawl

Web Scraper

svDetect

Automatic Curb 

Ramp Detection

Street Dataset

True PositiveStreet View images
3D-depth maps
Top-down map images
GIS metadata



遠目Remote Eye

svCrawl

Web Scraper

svDetect

Automatic Curb 

Ramp Detection

Street Dataset

True Positive

False Positives
Street View images
3D-depth maps
Top-down map images
GIS metadata



遠目Remote Eye

svCrawl

Web Scraper

svDetect

Automatic Curb 

Ramp Detection

Street Dataset

True Positive

False Positives

False Negative

Street View images
3D-depth maps
Top-down map images
GIS metadata



svCrawl

Web Scraper

Street Dataset

svDetect

Automatic Curb 

Ramp Detection

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

Street View images
3D-depth maps
Top-down map images
GIS metadata
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svCrawl

Web Scraper

Street Dataset

svDetect

Automatic Curb 

Ramp Detection

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
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Top-down map images
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Street Dataset

down map images

Verifiers cannot fix false negatives
(i.e., they cannot add new labels)



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection



遠目Remote Eye

svDetect

Automatic Curb 

Ramp Detection

1.Deformable part model (DPM)

2.Post-processing DPM

3.SVM-based classifier



Root filter Parts filter Displacement cost

Root filter Parts filter Displacement cost

Felzenszwalb et al., CVPR’08, CVPR’10



Root filter Parts filter Displacement cost



True Positives 1

False Positives 12

False Negatives 0



True Positives 1
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True Positives 1

False Positives 12

False Negatives 0





True Positives 1

False Positives 5

False Negatives 0



True Positives 1

False Positives 5

False Negatives 0



True Positives 1

False Positives 3

False Negatives 0



True Positives 1

False Positives 12

False Negatives 0



True Positives 6

False Positives 11

False Negatives 1



True Positives 6

False Positives 4

False Negatives 1



True Positives 6

False Positives 4

False Negatives 1



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection



svControl

Automatic 

Task Allocation

Curb Ramp Detector Output (16 Features)

Raw # of bounding boxes
Descriptive stats of confidence scores 
Descriptive stats of XY-coordinates 

3D-Point Cloud Data (5 Features) 
Descriptive stats of depth information 
(e.g., average, median, variance) of 
pixel depth

Intersection Complexity (2 Features)

Cardinality (# of connected streets)
Amount of road

Binary classifier trained to predict occurrence of false negatives from svDetect stage



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection



svCrawl
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svLabel
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Ramp Detection



Correct false positives from computer vision



Correct false positives from computer vision

Playback Speed: 2x



svCrawl

Web Scraper

Street Dataset

遠目Remote Eye

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata

svDetect

Automatic Curb 

Ramp Detection





Playback Speed: 2x



1. Generate ground truth labels

2. Train computer vision & task controller

3. Deploy Tohme to crowd

4. Compare Tohme to baseline
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svCrawl

Web Scraper

Street Dataset

svDetect

Automatic Curb 

Ramp Detection

svControl

Automatic 

Task Allocation

svVerify

Crowd Verification

svLabel

Crowd Labeling

Street View images
3D-depth maps
Top-down map images
GIS metadata



1. Improving detection algorithms

2. Project Sidewalk

3. New workflows & interfaces

4. Developing new assistive technologies



Recently accepted to CVPR’17

Context map

Input image



















Build new models & 
visualizations of city 
accessibility

Smart routing for people 
with mobility impairments









See: Barton, et al., 2008; Naiser & Hand, 2008; Kafai, et al., 2014; 





Complex Problems



Wearables: an engaging vehicle for building science skills?

Unprecedented data

Inherently personalized

Life relevant

Actively engage body in learning



[IDC’15, CHI’16, CHI’17] [IDC’13, CHI’15, ICLS’16, CHI’17] [IDC’16, ICLS’16, CHI’17] 



How can we… 
use the human body and physical 

activity as an engaging platform for 

scientific inquiry?





Jon Froehlich Tamara Clegg Leyla Norooz Seokbin Kang Virginia Byrne Rafael Velez

Monica Katzen Angelisa Plane Vanessa Oguamanam Anita Jorgensen

Sage Chen

Thomas Outing

Amy Green



Jon Froehlich Tamara Clegg Majeed Kazemitabaar Liang He

Katie Wang Alex Jiao Tony Cheng

Chloe Aloimonos

Thomas OutingJason McPeak



Norooz & Froehlich, IDC’13; Norooz et al., CHI’15; Norooz et al., ICLS’16; Clegg et al., CHI’17

































Session video

Pre- & post-study questionnaires

Post-study interviews with children

Post-study interviews with staff



Session video

Physical actions (e.g., gestures, interactions with shirt, movements)

Engagement (e.g., facial expressions, comments; Carini et al., 2006 & Jablon & Wilkinson, 2006)

Spoken questions & observations (e.g., “What happens if my heart stops beating?”)

Design preferences (e.g., likes, dislikes, new design ideas)

Video coding process based on Chi, 1997



Pre- & post-study questionnaires



High Engagement



High Engagement



Actively Engaging Body



Touching Flexing

Actively Engaging Body

RunningBalancing Eating



Exploring Layers of Body



Exploring Layers of Body



Promoting Social Interaction



Supporting Pretend Play



Some Unexpected Things



Disembodied Use



Disembodied Use



Disembodied Use





How Does It Work?



How Does it Work?



Pre- & Post-Questionnaires



Body Map Drawing: Before & After



Body Map Drawing: Before & After

Included at 
least one 

new organ

Corrected 
positions of 

organs

Improved 
organ 

shapes



Body Map Drawing: Before & After

Had error on 
pre-test that 

persisted

Added organ 
but in wrong 

position

Removed 
organs correct 

in pre-test





Wearers Look Downwards



Responsive E-textile Collaborative Display Construction Kit









Responsive E-textile Collaborative Display Construction Kit



Responsive E-textile Collaborative Display Construction Kit





See: Buechley & Hill, 2010; Kafai, Lee, et al., 2014; Kafai, Fields, & Searle, 2014









Buechley, 2006; Davis, et al., 2013; DuMont & Lee, 2015; Dunne et al., 2015; Kafai et al., 2014; Katterfeldt et al., 2009; Ngai et 
al., 2013; Richard & Kafai, 2015; Searle, et al., 2014



How can we enable young children 

(elementary age) to design & build 

their own interactive wearables?

What do children want to build and 

how can we support these goals?

How does working with our tools & 

techniques impact skill development 

& perceptions of STEM?



Pilot 
Studies

Refinement
Design 
Probes

Refinement
Participatory 

Design

Ideation / 
Prototyping

Initial 
Ideation 

Single 
Session 

Workshops

Multi-
Session 

Workshops



Cooperative Inquiry

Cooperative Inquiry: Guha, Druin, & Fails, 2013



Initial Sessions



Follow-up Sessions



Rapid Prototyping with littleBits



Rapid Prototyping with littleBits



React to body movement & physiology (e.g., heartrate)

Recognize gestures & physical actions (e.g., recognize a jump)

Support social interaction (e.g., vibrate when friend nearby)

Augment play experiences (e.g., freeze tag)

Respond to environment (e.g., increase visibility at night)



One slide on this
STEM Educators



Wearables as a design platform

High tinkerability

Wide walls

New modules

Better support for lo-fi materials

Child-friendly iconography & text



https://github.com/MakerWear















Provides power to all 
connected modules

Sense & translate
physical phenomena 
into analog signals

Transform signals into 
other types of signals

Translate signals into 
perceptual forms

Miscellaneous
(e.g., DIY module)
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Sine WaveVolume KnobMotion Detector

Impact Sensor

Tilt Sensor

Button

Light Sensor

Color Detector

Temperature

Distance Sunlight Detector

Receiver

Sound Sensor

Heartbeat DIY Electronic

Wire Start

Wire End

Bridge
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SpinnerVibrationRotator

ThresholdFade Square WaveCounterInverter Sine WaveVolume Knob

Motion Detector

Impact Sensor Tilt Sensor

Color Detector TemperatureDistance Sunlight DetectorHeartbeat

Sender

ReceiverWire Start

Wire End

DIY Electronic

Bridge

Light Bar

Number

Sound Maker

Sound Sensor Light Sensor Single Light
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Button



Temperature 
Sensor

Exposed electronic component

Laser cut module cover

Custom PCB with embedded
microcontroller & SMD 
components

Custom PCB with neodymium 
magnet & contact spring for 
socket connection













32 children (16 female; ages 5-12; avg=8.3)

Two single-session workshops (N=13)

Three four-session workshops (N=19)

Workshops common method for e-textile studies. E.g., Buechley et al., 2006; Katterfeldt et al., 2009; Searle et al., 2014; Richard & Kafai, 2015; 



Group Ages (Avg) N (female)

Uses computer 
at least a few 
times a week

Has used a graphical 
programming system 
(e.g., Scratch)

Has used an electronic kit 
(e.g., Snap Circuits, Lego 
Mindstorms,  littleBits)

1 5-7 (6.0) 5 (5) 100% 40% 20%

2 8-12 (9.9) 8 (3) 88% 38% 50%

1 5-7 (6.3) 7 (3) 100% 57% 57%

2 8-9 (8.8) 6 (1) 83% 50% 66%

3 8-12 (10.2) 6 (4) 83% 83% 66%

Total 5-7 (8.3) 32 (16) 91% 53% 53%
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1 5-7 (6.0) 5 (5) 100% 40% 20%

2 8-12 (9.9) 8 (3) 88% 38% 50%

1 5-7 (6.3) 7 (3) 100% 57% 57%

2 8-9 (8.8) 6 (1) 83% 50% 66%

3 8-12 (10.2) 6 (4) 83% 83% 66%

Total 5-7 (8.3) 32 (16) 91% 53% 53%



Post-study 
questionnaire

MakerWear 
introduction

Pre-study 
questionnaire

Building/playing 
with MakerWear



Post-study 
questionnaire

Pre-study 
questionnaire

Building/playing 
with MakerWear

Select 
clothes

Incrementally introduce 
modules + play time

Design 
Challenge

Design 
Challenge

More 
modules



Build your own wearable instrument that 

makes music and lights up when you move.



Build your own wearable instrument that 

makes music and lights up when you move.

Power

Motion 
Detector

Sound 
Maker

MultiColor
Light



Power

Motion 
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Sound 
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Light

Light Bar Vibration

Yellow 
Light

Number∝
∝

Spinner



Build your own wearable instrument that 

makes music and lights up when you move.

Power

Motion 
Detector

Sound 
Maker

MultiColor
Light

Light Bar Vibration

Yellow 
Light



Build a wearable for Buzz Lightyear that has two modes: 

1. In attack mode, you shoot “laser beams” (lights).

2. In defend mode, you activate a LEGO shield. 

The two modes are automatically activated based on 

your arm’s position (up vs. out) but the catch is that you 

cannot attack & defend at the same time.



Build a wearable for Buzz Lightyear that has two modes: 

1. In attack mode, you shoot “laser beams” (lights).

2. In defend mode, you activate a LEGO shield. 

The two modes are automatically activated based on 

your arm’s position (up vs. out) but the catch is that you 

cannot attack & defend at the same time.
Power

Red Light
(“Laser”)

Rotator
(Servo Motor)

Tilt Sensor



Build a wearable for Buzz Lightyear that has two modes: 

1. In attack mode, you shoot “laser beams” (lights).

2. In defend mode, you activate a LEGO shield. 

The two modes are automatically activated based on 

your arm’s position (up vs. out) but the catch is that you 

cannot attack & defend at the same time.
Power

Red Light
(“Laser”)Tilt Sensor

Rotator
(Servo Motor)

Oops! Both the “laser” and shield 

are activated at the same time!



Build a wearable for Buzz Lightyear that has two modes: 

1. In attack mode, you shoot “laser beams” (lights).

2. In defend mode, you activate a LEGO shield. 

The two modes are automatically activated based on 

your arm’s position (up vs. out) but the catch is that you 

cannot attack & defend at the same time.
Power

Red Light
(“Laser”)Tilt Sensor

Rotator
(Servo Motor)

Inverter



Design 
ChallengeIntroduce basic modulesIntro

Pre-study 
questionnaire

End-of-day 
questionnaire

Aspects of multi-session procedure based on Marina Bers TangibleK Robotics Program; Bers et al., 2014; Sullivan & Bers, 2016



Design 
ChallengeIntroduce basic modulesIntro

Pre-study 
questionnaire

End-of-day 
questionnaire

Design 
Challenge

Introduce more advanced modules & 
concepts (e.g., inverters, branching)

“Fix-It” Design 
Challenge

End-of-day 
questionnaire

Design 
Challenge

Introduce lo-fi materials, communication 
modules, & advanced modifiers

Brainstorm & sketch 
project ideas

End-of-day 
questionnaire

Final project 
presentationsWork on final projects

“Fix-It” Design 
Challenge

Post-study 
questionnaire



How children make with MakerWear, what 

they make, & challenges therein

Overall understanding (e.g., actions vs. sensors)

Computational thinking (e.g., sequencing, branching)

Subjective factors (e.g., enjoyment)



What children designed & built for their final 

projects & why

How children progressed in their 

understanding & use of MakerWear

Age-related differences



Session video

Design challenge performance (Radar et al., 1997)

End-user creations (Duncan et al., 2014; Hansen et al., 2015)

Artifact-based interviews (Brennan & Resnick, 2012)

Pre & post-study questionnaires
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Two Work Styles



Two Work Styles



Appropriating Modules for Debugging





Use of Wire Module



Use of Wire Module





Wire Mediates Play & Facilitates Co-Design





Creating New Behaviors







Sender

Volume KnobMotion Detector

Impact Sensor Tilt Sensor Button

Light Sensor

Color Detector

Temperature

Distance Sunlight Detector Receiver

Sound Sensor Heartbeat

Wire Start

Wire End











Modules will be wirelessly programmable via a custom tablet programming interface



Children can program complex behavior via a novel machine learning interface



Children can build their own scientific instruments that allow them to investigate and compare phenomena 

over time and across contexts.





How many generations in all of human 

history have had the opportunity to rise to 

a challenge that is worthy of our best 

efforts? A challenge that can pull from us 

more than we think we can do.



Congressionally Directed Medical Research

NSF #1302338, Google, IBM
PI Froehlich, Co-PI David Jacobs

Google Faculty Research Award
PI Leah Findlater, Co-PI Froehlich 

Department of Defense CDMRP
PI Froehlich, Co-PIs Leah Findlater & Rama Chellappa

NSF #1441184
PI Froehlich, Co-PI Tamara Clegg

NSF CAREER #1652339
PI Froehlich 
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All photos by Jon Froehlich or Makeability Lab students except

REUTERS/Muzaffar Salman
Found http://www.businessinsider.com/us-trusts-10-lessons-of-2013-2013-12

Unknown
Found https://chravellinx.wordpress.com/2014/12/15/11-dec-mantytie-valimotie/

Gettystock
Found http://www.huffingtonpost.com/2014/08/21/use-fitness-tracker_n_5697749.html

Electronic Fashion Camp by Amy Florence
Found https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/

LilyPad Arduino Interactive Pad by Agy Lee
Found https://youtu.be/agYGhwc3NOk

I Heart LilyPad Arduino by Rain Ashford
Found https://www.slideshare.net/Rainycat/i-lt3-lilypad-Arduino

Manual Sewing Skills by Leah Buechley
Found https://www.flickr.com/photos/leahbuechley/2595747031/

Example E-Textile Projects
Please see respective PowerPoint slide in notes section for attributions

Girls Make It
Found http://www.girlsmakeit.org/

Thinking Fabrics by Cindy Hu
Found http://ima.nyu.sh/documentation/author/yh1437/

Leaf by Thomas Helbig
Found https://thenounproject.com/search/?q=environmental+sustainability&i=120238

Health by Timothy Miller
Found https://thenounproject.com/search/?q=health&i=396737

Accessible Icon Project
Found http://accessibleicon.org/#use

Microscope 
Found https://thenounproject.com/search/?q=science&i=860760

http://www.businessinsider.com/us-trusts-10-lessons-of-2013-2013-12
https://chravellinx.wordpress.com/2014/12/15/11-dec-mantytie-valimotie/
http://www.huffingtonpost.com/2014/08/21/use-fitness-tracker_n_5697749.html
https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/
https://youtu.be/agYGhwc3NOk
https://www.flickr.com/photos/amypickup/sets/72157631039891148/with/7769553484/
https://www.flickr.com/photos/leahbuechley/2595747031/
http://ima.nyu.sh/documentation/author/yh1437/
https://www.flickr.com/photos/leahbuechley/2595747031/
https://thenounproject.com/search/?q=environmental+sustainability&i=120238
https://thenounproject.com/search/?q=health&i=396737
http://accessibleicon.org/#use
https://thenounproject.com/search/?q=science&i=860760


All videos by Jon Froehlich or Makeability Lab students except

How I See It (Reading Braille)
By Ginny Owens
https://youtu.be/xfuxuxmoGXU

Living Paintings: Bringing the Visual 
World to Life for Blind People
By Charity Bank
https://youtu.be/yZ5-4vqPtjg

How Blind People Find Braille Signs
By Tommy Edison
https://youtu.be/fYLdlO96uaM

Kyren and the Mysterious World of Sight:
Growing Up Blind
By Attitude
https://youtu.be/fYLdlO96uaM

Blind Boy Finds His Voice
By Attitude
https://youtu.be/q6uQOHuIfMM

https://youtu.be/xfuxuxmoGXU
https://youtu.be/yZ5-4vqPtjg
https://youtu.be/fYLdlO96uaM
https://youtu.be/fYLdlO96uaM
https://youtu.be/q6uQOHuIfMM
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