
Differences in Crowdsourced vs. Lab-based Mobile and 
Desktop Input Performance Data 

Leah Findlater1, Joan Zhang2, Jon E. Froehlich2, Karyn Moffatt3 
1,2Human-Computer Interaction Lab 

1College of Information Studies   |   2Dept. of Computer Science  
University of Maryland, College Park, MD 

leahkf@umd.edu, joan.r.zhang@gmail.com, jonf@cs.umd.edu  

3ACT Research Group 
School of Information Studies 

McGill University, Montreal, QC 
karyn.moffatt@mcgill.ca 

 
ABSTRACT 
Research on the viability of using crowdsourcing for HCI 
performance experiments has concluded that online results 
are similar to those achieved in the lab—at least for desktop 
interactions. However, mobile devices, the most popular 
form of online access today, may be more problematic due 
to variability in the user’s posture and in movement of the 
device. To assess this possibility, we conducted two 
experiments with 30 lab-based and 303 crowdsourced 
participants using basic mouse and touchscreen tasks. Our 
findings show that: (1) separately analyzing the crowd and 
lab data yields different study conclusions—touchscreen 
input was significantly less error prone than mouse input in 
the lab but more error prone online; (2) age-matched 
crowdsourced participants were significantly faster and less 
accurate than their lab-based counterparts, contrasting past 
work; (3) variability in mobile device movement and 
orientation increased as experimenter control decreased—a 
potential factor affecting the touchscreen error differences. 
This study cautions against assuming that crowdsourced 
data for performance experiments will directly reflect lab-
based data, particularly for mobile devices. 
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INTRODUCTION 
Online crowdsourcing platforms such as Amazon’s 
Mechanical Turk (MTurk) are increasingly popular for 
conducting fast, relatively inexpensive user studies with a 
large number of participants. A substantial body of work 
has examined and discussed the viability of crowdsourcing 
human-subjects studies—across fields as diverse as human-
computer interaction (HCI) [19], psychology [4], behavioral 
economics [15], and political science [2].  

Critical to understanding this viability are experiments that 
compare crowdsourced data to lab-based data. A common 
HCI focus that has received relatively little attention from 
this perspective is performance evaluation of input devices 
and interaction techniques. Such studies are typically 
conducted in controlled lab settings and performance is 
measured in milliseconds, making even short bursts of 
inattention problematic. Komarov et al. [21] recently 
compared data collected in the lab to data collected through 
MTurk for three desktop-based interaction techniques: 
adaptive split menus [29], split interfaces [11], and bubble 
cursor [12]. The study found no evidence of “significant or 
substantial differences” between the lab and crowdsourced 
data, suggesting that crowdsourcing may indeed be a valid 
means of conducting HCI performance studies. 

However, at least two important questions remain. First, it 
is unclear whether Komarov et al.’s [21] findings extend to 
other types of devices. In particular, mobile devices may 
make remote data collection more problematic due to 
movement of the device itself and variability in the user’s 
posture. Given that mobile device internet usage has now 
eclipsed that of desktops [8], this question is especially 
pertinent to online data collection. Second, the lab-based 
sample sizes employed by Komarov et al. were relatively 
small (N=10 to 14), selected to match sample sizes in the 
original experiments that were being replicated, but likely 
resulting in low statistical power when directly comparing 
the lab-based and crowdsourced groups. The question of 
power is especially crucial here as the implications of their 
study hinge on the lack of significant differences found.  

To address these questions, we conducted two experiments 
comparing crowdsourced and lab-based data. For the first 
experiment, we recruited 202 MTurk participants and 30 
lab-based participants. Participants completed a set of basic 
input tasks (crossing, dragging, pointing, and steering) 
using an indirect pointing device (e.g., a mouse) and/or a 
touchscreen tablet. This experiment thus builds on 
Komarov et al.’s [21] study by including a mobile device 
and a different set of interaction techniques, but also 
provides a larger sample size for revisiting findings from 
that study. Our findings show that, in contrast to Komarov 
et al. [21], (1) separately analyzing the crowdsourced and 
in-person data yielded different study conclusions—
touchscreen input was significantly less error prone than 
mouse input in the lab but more error prone online, and (2) 
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by directly comparing the two data sources, age-matched 
crowdsourced participants were significantly faster and less 
accurate than their lab-based counterparts. 

The second experiment delved more deeply into a potential 
factor affecting the touchscreen accuracy results: whether 
degrees of experimental control affect the physical 
orientation and movement of the mobile device itself. In the 
first experiment, we had asked participants to lay their 
tablet flat during tasks. In this second experiment, we 
recruited 101 new crowdsourced touchscreen participants 
who were not given that instruction and compared them to 
the original participants for whom we had touchscreen data. 
Extraneous device movement and rotation of the device 
away from a horizontal position both increased significantly 
as experimental control decreased—from the lab setting to 
the remote setting to removing the placement instruction.  

The primary contributions of this paper are: (1) empirical 
evidence showing that there are significant differences in 
performance between crowdsourced and lab-based study 
participants, in contrast to previous work [21], and (2) a 
characterization of how variation in experimental control 
(in terms of environment and instruction) affects movement 
and orientation of a mobile device—an important factor 
potentially impacting remote collection of mobile input 
data. These contributions caution against assuming that 
performance data collected from paid crowdworkers will 
directly reflect data from a more controlled setting, both for 
mouse-based input and, particularly, for mobile input. We 
discuss the potential implications of these findings.  

RELATED WORK 

Crowdsourcing versus Traditional Lab Studies 
Studies on the viability of using crowdsourcing as an 
alternative to traditional lab-based experiments have 
spanned fields from HCI to political science. Burhmester et 
al. [4], for example, analyzed the demographic makeup of a 
large MTurk sample and compared test-retest reliability of 
psychometric data, concluding that the MTurk data met 
acceptable standards. Horton et al. [15] also found they 
could replicate a set of behavioral economics experiments 
using MTurk and argued that these types of online 
experiments have high internal validity. Similar conclusions 
were drawn by Berinsky et al. by replicating a series of 
political science experiments [2]. In HCI, an important 
comparison of lab versus crowdsourced data collection is 
Heer and Bostock’s [13] replication of visual perception 
studies using MTurk. Although the crowdsourced data was 
more variable, it closely matched previous lab-based results 
and design implications were identical from the two data 
sources. Their study also showed that using qualification 
tests and verifiable questions results in high quality data.  

The closest work to ours, and upon which we build, comes 
from Komarov et al. [21], who compared crowdsourced and 
lab-based performance data for three desktop-based 
interaction techniques. For each of the three experiments, 
they (1) separately analyzed the crowdsourced and lab-

based data to determine if there were any differences in the 
study conclusions reached from the two sources (e.g., is 
Condition A faster than Condition B for both sources), and 
(2) directly compared the sources to identify any 
statistically significant differences between them (e.g., are 
crowdsourced participants consistently faster than lab-based 
participants). As already mentioned, based on these two 
types of analyses, the study’s conclusion was that there 
were no significant or substantial differences between the 
two sources of data. We follow Komarov et al.’s method, 
extending it to a new device and different tasks, and 
highlight where our findings contrast theirs. 

Finally, while there is relatively little work on 
understanding the viability of employing crowdworkers for 
performance experiments, a number of studies have 
recently increased the scale at which HCI performance data 
is collected, by creatively designing and deploying online 
apps through the Apple App Store or Google Play Store. 
Examples include collecting touch input data [14] or text 
entry performance data [28] through mobile games. 
However, this type of data collection differs in terms of 
participant incentives and goals (i.e., to have fun or be 
entertained) from our focus, which is paid crowdwork [20]. 

Note also that work exists on crowdsourcing design 
critiques (e.g., [34])—subjective feedback on user interface 
designs—which contrasts our focus on input experiments 
that require precise performance measurements. 

Who are Mechanical Turk Workers? 
Diversity is seen as a strength of the MTurk participant pool 
[24,25], although this diversity can be affected by factors 
such as pay, task complexity, and sampling time [25]. 
Paolacci and Chandler [25] surveyed studies characterizing 
MTurk samples and concluded that workers were 
dominated by US and Indian residents, tended to be 
younger, overeducated, underemployed, less religious, and 
more liberal than the population as a whole. Other work has 
reported that MTurk samples tend to have more females 
than males [24], at least for US samples [17,18]. In an 
update of their 2010 paper [27] on MTurk demographics, 
Silberman et al. [30] recently noted that demographics have 
shifted in the past five years and that “professional Turkers” 
now complete most tasks in the system and have a stronger 
incentive than other workers to seek out high paying tasks 
and perform them well. As such, it may be timely to revisit 
findings from earlier crowdsourcing studies. 

Quality Concerns with Crowdsourced Data 
Obtaining and assessing high-quality data is an important 
challenge for crowdsourcing [1,20]. Quality issues range 
from cheating behaviors such as arbitrarily selecting 
answers or copying answers from elsewhere [9] to less 
malicious behavior such as not paying close attention [21]. 
In early work experimenting with crowdsourcing for 
subjective data collection in HCI, Kittur et al. [19] 
recommended that quality could be improved by including 
explicitly verifiable questions in the task and making 
cheating equally effortful to completing the task accurately. 
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Since then, a number of quality control mechanisms have 
become popular, such as redundancy, where multiple 
workers complete the same task, reputation systems, ground 
truth seeding, statistical filtering, and expert review [26]. 
Providing feedback through “shepherding” can also lead to 
higher quality work [7]. At a high level, these approaches 
can be grouped into up-front task design approaches versus 
posthoc result analysis approaches [20].  

Many popular quality control approaches, however, are not 
relevant to performance studies such as ours; for example, 
ground truth seeding (using gold standard data) and 
redundancy do not have a direct analog. Instead, careful 
task design, comprehensible instructions, and statistical 
outlier detection (as used in [21]) are particularly 
important—we employ these in our study. 

EXPERIMENT 1: COMPARING CROWDSOURCED AND 
LAB-BASED INPUT PERFORMANCE 
To compare crowdsourced mobile input performance data 
to that collected in the lab, and to determine whether this 
comparison is different from desktop data, we recruited 30 
lab participants and 202 crowd participants. We build on 
Komarov et al.’s [21] study by largely following their 
method, but extend it to mobile devices and a different set 
of interaction techniques (in our case, crossing, dragging, 
pointing, steering). Our larger sample size is also useful for 
revisiting their study conclusions comparing crowdsourced 
and lab-based data with desktop interaction techniques.  

Method 

Apparatus and Tasks 
The experiment testbed was built in JavaScript, PHP, and 
HTML and tested in major browsers (Chrome, Safari, 
Internet Explorer, Firefox) on desktop and laptop computers 
and in Safari on Apple iOS. In the lab, the testbed was 
loaded in Safari on an Apple iPad 3 (9.7” screen) and in 
Chrome on an Apple laptop running Mac OS X El Capitan 
connected to a 1280×1024-resolution external monitor and 
a Logitech M310 wireless optical mouse. Crowdsourced 
participants could use their preferred browser on a laptop or 
desktop, but had to use an iPad for touchscreen input due to 
inconsistent performance of some Android tablets. The 
software logged touch and mouse input, as well as 
accelerometer and gyroscope data from the iPad. 

The testbed guided participants through four basic input 
tasks: crossing, dragging, pointing, and steering (Figure 1). 
The tasks were implemented based on the ISO 9241-9 
circle 2-D Fitts’ law task standard [16]. To attain a range of 
indexes of difficulty, we fully crossed amplitudes (A) of 
{250px, 500px} with widths (W) of {32px, 64px, 96px}. 
We then removed the combination (A=500px, W=96px) 
because it did not fit on the iPad screen with enough 
padding to allow participants to overshoot the target by a 
distance of 2W (the iPad is only 768px wide and the task 
canvas had to be square for the ISO task). Index of 
difficulty (ID) is the ratio between the distance to the target 
and the target’s width, with higher ID values indicating 

greater input difficulty [31]: ID = log2(A/W+1). The five 
A×W combinations thus provide an ID range of 1.9–4.1. On 
a 9.7” iPad, the smallest width, 32px, corresponds to a 
6mm-wide target. 

Participants 
Table 1 shows demographics and group sizes for the three 
participant groups recruited for this experiment: 
crowdsourced mouse, crowdsourced touchscreen, and lab-
based. For the crowdsourced mouse group (N=101), 85 
participants reported using an optical mouse to complete the 
study, 13 used a touchpad, and three used a mechanical 
mouse. Crowdsourced touchscreen participants were 
required to have access to an Apple iPad to participate. 
Crowdsourced participants were recruited through MTurk 
and were paid $4 to complete the study, while lab-based 
participants were recruited through campus mailing lists 
and compensated $15. The difference in compensation 
reflects both that the procedure for lab-based participants 
was twice as long as for crowdsourced participants (the 
former completed both touchscreen and mouse conditions) 
and that lab-based participants had to travel to our lab. 

 Trial Start Trial Movement and End 
Crossing          Hover/touch for 300ms  

                               Cross over line 

Dragging                      Button/finger down                     Button/finger up 

Pointing      Click/tap 
               Click/tap 

Steering            Hover/touch for 300ms         Cross over end of column 

Figure 1. Example trials (cropped screenshots) from the four 
tasks participants completed with the mouse and/or 

touchscreen: crossing, dragging, pointing, and steering. As 
seen here, trials varied in terms of angle of movement, based 

on ISO 9241-9 [16]. To start a trial, the participant had to 
activate the start area target (orange circle) by clicking or 

tapping in the dragging and pointing tasks or by hovering or 
holding for 300ms in the crossing and steering tasks. 

N Age Gender Experience 
Crowdsourced mouse 
101 M=35.4  

range=19–69 
SD=11.0  

41 women 
59 men 
1 other 

99 daily computer users 

Crowdsourced touchscreen  
101 M=32.0 

range=19–59 
SD=8.5 

51 women 
50 men 

90 daily touchscreen users 

Lab-based 
30 M=19.9 

range=18–29 
SD = 2.1 

17 women 
13 men 

30 daily computer users 
29 daily touchscreen users 

Table 1. Participant groups for Experiment 1. 
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Procedure 
The crowdsourced and lab-based participants completed an 
almost identical study procedure. The main difference, in 
addition to the presence of an experimenter and use of a 
quiet room for lab-based participants, was that 
crowdsourced participants only used one of the input 
devices (mouse or touchscreen), whereas lab-based 
participants used both devices (i.e., a fully within-subjects 
design). The choice to use a within-subjects design in the 
lab reflects standard practice in HCI performance 
experiments, while the between-subjects design for 
crowdsourced participants reflects the piecemeal 
participation that is common with crowdsourced data 
collection. This difference between the crowdsourced and 
lab-based data collection is considered later in our analyses. 

Crowdsourced procedure. The study was advertised as 
taking 20-30 minutes, though some participants completed 
it more quickly. After viewing and agreeing to consent 
information, participants completed four basic input tasks 
(crossing, pointing, dragging, steering), presented in 
random order.1 Touchscreen participants were asked to 
place the iPad on a flat surface such as a table. Each task 
included five practice trials, which participants could repeat 
once if they chose, followed by 55 test trials presented in 
random order (11 trials for each A×W combination). Each 
trial began by activating a circular start target by 
tapping/clicking (for the pointing and dragging tasks) or by 
holding/hovering for 300ms (for the crossing and steering 
tasks). Spatial outlier trials were automatically redone by 
appending them to the end of the set of trials. These outliers 
were defined based on [23] as trials where (1) the actual 
movement distance was less than half of A or (2) the 
endpoint of the trial (e.g., mouse click) was more than 2W 
away from the ideal endpoint (i.e., the target center).  

The testbed software enforced the use of an iPad as opposed 
to other touchscreen devices and required that the iPad be 
used in portrait orientation. A modal dialog was displayed 
on the screen with a warning message if the orientation 
changed or if more than three fingers were detected at once. 
A warning message was also displayed for both the mouse 
and touchscreen conditions if no user activity was detected 
for 30 seconds. After dismissing one of these warning 
dialogs, the current trial restarted. A break was offered 
halfway through each task. Between tasks, short 
questionnaires collected demographic data and device use.  

A strength of crowdsourcing is that the computer setups 
will be more ecologically valid than in the lab, varying, for 
example, in display size and mouse model. Specifically for 
iPads, three sizes were available: 7.9”, 9.7” (the standard 
size), and 12.9”. Physical target sizes and distances were 
the same for the 9.7” and 12.9” versions, while the smallest 
size proportionately scaled down output such that a 6mm 
                                                           
1 With the touchscreen only, participants completed two additional tasks 
(pinch/zoom), but these appeared only after the four primary tasks and so 
do not affect performance on the earlier tasks. Because they were not part 
of the primary experimental design, we do not report on them here. 

target on the medium iPad was 4.9mm on the small iPad. 
Apple does not make it possible to programmatically 
distinguish between the small and medium iPads using 
JavaScript/HTML2 and we did not originally ask 
participants to self-report device size.  Based on Fitts’ Law, 
there should theoretically be no impact on input 
performance for our tasks: due to the proportional scaling, 
the indexes of difficulty are identical for both sizes; 
however, some studies suggest that display size can impact 
performance [22]. To assess whether iPad size impacted 
performance, we collected another set of crowdsourced 
touchscreen data from 37 small iPad users and 61 medium 
iPad users. There were no significant differences between 
the two devices in terms of trial completion time (unpaired 
t-test: t=96 = 0.46, p = .647, d = 0.08) and error rate (Mann 
Whitney U test: Z = 0.58, p = .562, r = 0.06) across the four 
study tasks; effect sizes were also close to zero. 

Lab-based procedure. Study sessions lasted up to one hour, 
longer than for crowdsourced participants due to the within-
subjects design used in the lab: participants completed all 
four tasks with both the mouse and the touchscreen tablet. 
Input device (mouse, touchscreen) was fully 
counterbalanced, while, again, tasks were randomly ordered 
for each device. For the touchscreen, the iPad was placed 
flat on a table. For each input device, the experimenter 
loaded the study webpage in the browser before asking the 
participant to independently complete the same procedure 
as described for crowdsourced participants.  

Dataset and Analysis 
The dataset includes 44,440 trials from crowdsourced 
participants and 13,200 trials from lab-based participants. 
To manage quality issues that can arise with crowdsourced 
data, we identified: (1) trial-level outliers that could have 
resulted from momentary distraction (e.g., 45 seconds to 
complete a trial that had previously been completed in 5-10 
seconds) and (2) participant-level outliers that could have 
resulted from a more systematic confound such as watching 
television while completing the study. We used the 
interquartile range (IQR) method, which is more robust 
than mean-based outlier approaches to extreme outliers, like 
the trial-level example above. An extreme outlier trial is 
defined as being more than 3×IQR above the third quartile 
or below the second quartile [6]. For trials, this calculation 
was made within each A×W condition for each task for each 
participant, removing 1.0% of trials across all participant 
groups. Participant-level outliers were computed based on 
average trial completion time across all tasks in the 
respective participant group. The exact numbers of 
participant-level outliers are reported in Results. 

Our main measures were trial completion time and error 
rate. We checked the normality assumption required of 
parametric tests using Q-Q plots and Shapiro-Wilk tests. 
Both time and error rate violated this assumption. For time, 
we log-transformed the data to meet the normality 
                                                           
2 http://stackoverflow.com/questions/13248493/detect-ipad-mini-in-html5 
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assumption before applying ANOVAs and other parametric 
tests. For error rate, we employed non-parametric ANOVAs 
with Aligned Rank Transform (ART) [32], with Mann 
Whitney U or Wilcoxon signed ranks tests for posthoc 
comparisons. For all ANOVAs, when the degrees of 
freedom are fractional, a Greenhouse-Geisser adjustment 
has been applied. Bonferroni adjustments were applied to 
all posthoc pairwise comparisons. Finally, where non-
significant effects are reported, observed power is included 
to help with interpretation. 

Results 
Following Komarov et al.’s [21] approach, we report on 
two analyses: (1) Examining the crowdsourced and lab-
based data separately to assess possible differences in study 
conclusions reached from each data source—for example, is 
the touchscreen faster than the mouse for one dataset but 
not the other? (2) Directly comparing the two sources of 
data to determine whether statistically significant 
differences exist between them—for example, are 
participants in one dataset consistently faster than the other 
across all experimental conditions? For simplicity, we refer 
to all indirect pointing devices as “mouse”, though some 
crowdsourced participants used other devices (see above). 

Separately Analyzing Study Conclusions  
After removing participant-level outliers in each of the 
three participant groups, this analysis includes 99 
crowdsourced mouse participants, 100 crowdsourced 
touchscreen participants, and 30 lab-based participants. 
First, we analyze the lab-based data to create a baseline for 
comparison. Then, we analyze the crowdsourced data and 
compare its conclusions with those from the lab-based data. 

Lab-based data. Lab-based participants were faster and 
more accurate with the touchscreen than the mouse, which 
is in line with previous findings in the lab (e.g., [10]). These 
overall patterns are shown in Figures 2 and 3. We computed 
separate 2×4 repeated measures ANOVAs for trial 
completion time and error rate, with factors of Device (2 
levels: mouse or touchscreen) and Task (4 levels: crossing, 

dragging, pointing, steering); in the case of error rate, we 
used an ANOVA with ART.  

Trial Completion Time. Average trial time was 831ms 
(SD = 329) with the touchscreen compared to 1,112ms 
(SD = 513) with the mouse. This difference was statistically 
significant, as shown by a main effect of Device 
(F1,29 = 88.06, p < .001, η𝑝𝑝2 = .75). Task also significantly 
impacted trial time (main effect: F2.13,61.86 = 129.93, p < 
.001, η𝑝𝑝2 = .82) and some tasks were impacted differently 
depending on what device was used (Task × Device 
interaction effect: F3,87 = 66.86, p < .001, η𝑝𝑝2 = .49). 

Based on the interaction effect, we conducted posthoc 
pairwise comparisons between devices for each task. These 
showed that the touchscreen was faster than the mouse for 
crossing, pointing, and steering, but the mouse was faster 
for dragging (all p < .05). For example, the average time for 
steering trials decreased from 1,837ms (SD = 483) with the 
mouse to 1,032ms (SD = 386) with the touchscreen. 
Dragging, in contrast, went from 950ms (SD = 161) with 
the mouse to 1,068ms (SD = 214) with the touchscreen. 

Error Rate. Error rates (Figure 3) were also lower with the 
touchscreen than with the mouse, at on average 3.0% 
(SD = 3.3) versus 4.9% (SD = 6.6) respectively. This 
difference was statistically significant (main effect of 
Device: F1,29 = 27.90, p < .001, η𝑝𝑝2 = .49). As with trial time, 
error rates were also significantly different based on task 
(main effect of Task: F3,87 = 28.67, p < .001, η𝑝𝑝2 = .50), and 
some tasks tended to be more error prone with one device 
than the other (Task × Device interaction effect: F2.43,70.52 = 
37.34, p < .001, η𝑝𝑝2 = .56). 

Posthoc pairwise comparisons based on the interaction 
effect showed that participants made significantly fewer 
errors with the touchscreen for crossing and steering (both p 
< .05), but made significantly more errors with the 
touchscreen for pointing (p < .05); there was no difference 
between the two devices for dragging. These differences 

 
Figure 2. Average trial completion time for all participants in 
Experiment 1. Lower values are better and error bars show 
standard error. Analyzing the crowdsourced and lab-based 

data separately results in identical conclusions. 

 
Figure 3.  Average error rate results for all participants in 

Experiment 1. Lower values are better and error bars show 
standard error. Error rates were lower with the touchscreen 
compared to the mouse for lab-based participants, while the 

opposite was true of crowdsourced participants.   
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were most notable with steering, where there were 
approximately three times as many errors with the mouse 
(M = 10.1%, SD = 9.4) as with the touchscreen (M = 3.0%, 
SD = 4.0), and crossing, where there were twice as many 
errors with the mouse (M = 6.4%, SD = 5.1) as with the 
touchscreen (M = 3.1%, SD = 3.0).  

Finally, for the pointing task only, we computed Fitts’ law 
models for all participants using bivariate endpoint 
deviation [33]. Average model fits (Pearson r) were higher 
with the mouse at r = .95 (SD = .05) than with the 
touchscreen at r = .90 (SD = .08). This difference was 
significant with a Mann-Whitney U test (U = 265, Z = 2.73, 
p = .006, r = 0.35), and is not surprising given that a 
standard Fitts’ law model does not adjust for the “fat 
finger” problem on touchscreens [3]. Reflecting the speed 
and error rate results above, throughput was higher with the 
touchscreen (M = 5.1, SD = 1.2) than with the mouse (M = 
3.6, SD = 0.4); this difference was statistically significant  
with a paired t-test (t29 = 7.18, p < .001, d = 1.72). 

Summary. The lab-based conclusions were as expected 
based on past comparisons of basic input tasks between 
mouse and touchscreen devices (e.g., [5,10]). The 
touchscreen was faster than the mouse for all tasks except 
dragging. The touchscreen also had lower error rates, most 
dramatically with steering where there were three times as 
many errors with the mouse than with the touchscreen. 

Crowdsourced data. Conclusions from the crowdsourced 
data were similar to the lab-based data for trial completion 
time but not for error rate. We computed separate 2×4 
repeated measures ANOVAs for time and error rate, with 
the between-subjects factor of Device (2 levels) and the 
within-subjects factor of Task (4 levels); again, in the case 
of error rate, this was an ANOVA with ART. 

Trial Completion Time. The touchscreen was significantly 
faster than the mouse, at 801ms on average per trial 
(SD = 363) compared to 1,040ms (SD = 520) with the 
mouse (main effect of Device: F1, 197 = 45.48, p < .001, 
η𝑝𝑝
2

P

 = .19). The tasks also significantly impacted time (main 
effect of Task: F2.59,510.37 = 359.83, p < .001, η𝑝𝑝

2 = .65). 
Again, this difference was more pronounced for some task 
and device combinations than others (Task × Device 
interaction effect: F2.59,510.37 = 44.24, p < .001, η𝑝𝑝2 = .18). 
Across tasks and devices, average trial time ranged from 
537ms (SD = 128) for pointing on the touchscreen to 
1,540ms (SD = 675) for steering with the mouse. Mirroring 
the conclusions for the lab-based data, pairwise 
comparisons between the two devices for each task showed 
that the touchscreen was faster than the mouse for all tasks 
but dragging, where the mouse was faster (all p < .05).  

Error Rate. For error rates, however, the conclusions 
diverged from the lab-based data. Error rates were on 
average 6.4% (SD = 6.6) with the touchscreen compared to 
4.5% (SD=7.1) with the mouse. Thus, while there was again 
a significant difference between the touchscreen and mouse 

input, the direction of that difference was the opposite to 
what it had been with the lab-based data: the touchscreen 
here was less accurate than the mouse, rather than more 
accurate (main effect of Device: F1,197 = 13.19, p < .001, 
η𝑝𝑝
2 = .06). There were also significant effects of Task 

(F2.88,566.30 = 66.69, p < .001, η𝑝𝑝2 = .25) and Task × Device 
(F2.79,549.62 = 13.10, p < .001, η𝑝𝑝2 = .06). 

Posthoc pairwise comparisons based on the interaction 
effect showed that dragging and pointing were significantly 
less accurate with the touchscreen than the mouse (both p < 
.05). Dragging error rates went from 0.7% (SD = 1.4) with 
the mouse to 3.3% (SD = 4.3) with the touchscreen, while 
pointing error rates more than tripled from 2.4% (SD = 2.2) 
with the mouse to 8.1% (SD = 7.0) with the touchscreen. 

Finally, we again computed Fitts’ law models for the 
pointing task only. On average, the model fits for mouse 
participants were r = .926 (SD = .079), whereas they were r 
= .898 (SD = .099) for touchscreen participants. Unlike 
with the lab-based data, this difference was not statistically 
significant with a Mann-Whitney U test (U = 4166, Z = 
1.71, p = .087, r = 0.12). Throughput, however, was again 
significantly higher with the touchscreen (M = 5.5, SD = 
1.2) than with the mouse (M = 4.1, SD = 0.7), as shown 
with an unpaired t-test (t197 = 10.28, p < .001, d = 1.46). 

In summary, trial completion time conclusions here are 
consistent with the lab: the touchscreen is faster than the 
mouse for all tasks but dragging. However, the touchscreen 
here was less accurate than the mouse, which is the direct 
opposite of the lab-based conclusions.  

Directly Comparing Crowdsourced vs. Lab-Based Data 
Again following Komarov et al.’s [21] method, our second 
analysis directly compares the lab-based and crowdsourced 
data to determine whether there are any systematic 
differences between the two sources (e.g., one group is 
consistently faster), in addition to the differences in study 
conclusions already seen. Rather than including all 
participants here, however, we roughly age-match the two 
groups. The lab-based group was younger than the 
crowdsourced group, which is unsurprising given that the 
lab-based sample, as is often the case, was drawn from a 
university campus. Indeed, the potential to obtain a more 
diverse participant sample is a strength of crowdsourcing 
studies [26,27]. However, because age affects performance 
with both mice and touchscreens (e.g., [10]), age-matching 
participants provides a cleaner comparison of how the lab 
versus remote setting impacts performance. Further, and 
again to ensure a clean comparison, we only include data 
from the first device each lab participant used, to mirror the 
between-subjects design of the crowdsourced data.  

Data and analysis. To accommodate the above goals, this 
analysis includes only 15 lab-based touchscreen participants 
and 15 lab-based mouse participants (i.e., only the 
participants who had used each of those devices first during 
the study procedure). We then randomly selected 15 
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touchscreen and 15 mouse participants who were younger 
than 30 years old from the crowdsourced group (the oldest 
lab-based participant was 29). There were no participant-
level outliers in any of the participant groups included in 
this analysis. Finally, to simplify analysis and focus on 
differences between the two devices (mouse vs. 
touchscreen) and the two groups (crowdsourced vs. lab-
based), we analyze trial completion time and error rate 
across all tasks rather than including Task as a factor. We 
also analyze Fitts’ law models for the pointing task only. 

Results. Overall, crowdsourced participants were faster and 
more error prone than lab-based participants; see Figure 4. 
We computed separate 2×2 ANOVAs (Group × Device) 
for each of these measures; ANOVA with ART in the case 
of error rate. Crowdsourced participants completed trials in 
801ms on average (SD = 240), significantly faster than the 
965ms (SD = 249) for lab-based participants (main effect of 
Group: F1,56 = 8.83, p = .004, η𝑝𝑝

2  = .14). Mirroring the 
device comparison results from the earlier analysis, the 
touchscreen was also faster overall than the mouse (main 
effect of Device: F1,56 = 17.69, p < .001, η𝑝𝑝2  = .24). The 
Group × Device interaction effect was not significant 
(F1,56 = .44, p > .05, η𝑝𝑝2  = .01, observed power = .10). 

The average error rate for crowdsourced participants was 
6.4% (SD = 5.9), which was almost double the 3.6% (SD = 
2.4) error rate of lab-based participants (main effect of 
Group: F1,56 = 5.72, p < .020, η𝑝𝑝2  = .09). Touchscreen error 
rates were particularly high for the crowdsourced 
participants, at 8.1% (SD = 7.4), compared to the lab-based 
participants, at 3.7% (SD = 2.5). However, neither the main 
effect of Device (F1,56 = 1.22, p > .05, η𝑝𝑝2  = .02, observed 
power = .19) nor the Group × Device interaction effect 
(F1,56 = .24, p > .05, η𝑝𝑝2 < .01, observed power = .08) were 
significant, perhaps due to the smaller sample size with this 
between-subjects experiment relative to our prior within-
subjects analysis of the lab-based data. 

Finally, we computed Fitts’ law models for the pointing 
task. Crowdsourced participants had higher throughput (M 
= 5.1, SD = 1.3) than lab-based ones (M = 4.4, SD = 1.2), 
which a 2×2 ANOVA showed was significant (main effect 

of Group: F1,56 = 7.70, p = .007, η𝑝𝑝2 = .12). This finding 
shows that the different speed-accuracy tradeoffs of the two 
groups were not comparable. The touchscreen also yielded 
higher throughput (M = 5.4, SD = 1.3) than the mouse (M = 
4.0, SD = 0.6) (main effect of Device: F1,56 = 32.80, p < 
.001, η𝑝𝑝2 = .37), while a Group × Device interaction effect 
was not significant (F1,56 = 1.56, p > .05, η𝑝𝑝

2  < .03, obs. 
power = .23). Model fits (r) were on average 0.94 (SD = 
0.06) for the lab-based group and 0.94 (SD = 0.07) for the 
crowdsourced group.  A 2×2 ANOVA with ART revealed 
no significant main or interaction effects on r (Group: F1,56 
= .14, p > .05, η𝑝𝑝2  < .01, obs. power = .07; Device: F1,56 = 
2.39, p > .05, η𝑝𝑝2  = .04, obs. power = .33; Group × Device: 
F1,56 = .03, p > .05, η𝑝𝑝2 < .01, obs. power = .05). 

Summary 
Separately analyzing the crowdsourced and lab-based data 
showed that the error rate conclusions derived from the two 
datasets were in opposition. More specifically, touchscreen 
error rates were higher compared to the mouse with the 
crowdsourced data, while the opposite was true of the lab-
based data. By directly comparing age-matched participants 
from both groups, we also found that crowdsourced 
participants made a different speed-accuracy tradeoff than 
lab-based participants: the former were faster and less 
accurate than the latter. Overall, our findings contrast 
Komarov et al.’s [21] study of desktop-based interaction 
techniques, which we return to in the Discussion section.  

In the next experiment, we examine one potential reason for 
differences in error rates with the mobile device: variability 
of device orientation and extraneous device movement that 
may occur outside of the controlled lab setting. 

EXPERIMENT 2: IN-DEPTH TOUCHSCREEN USE 
A mobile touchscreen device can be placed or held at 
different angles and can move during use, which introduces 
a potential source of performance variability when moving 
from a controlled setting to crowdsourced data collection. 
To understand the extent of this variability and its 
relationship to input performance, we examine tablet 
orientation and device movement, using the touchscreen 
data from Experiment 1 along with a new set of 101 
crowdsourced participants. In Experiment 1, crowdsourced 
participants were asked to place the tablet on a flat surface 
such as a table or desk (Figure 5), while all lab-based 
participants used the tablet on a desk. To assess more 
natural mobile touchscreen behavior from crowdsourced 
participants, this new set of participants completed the 
study without any device placement instruction. 

Method 
Experiment 2’s method is largely the same as that used in 
Experiment 1. We highlight only the differences here.  

Participants 
In addition to the 101 crowdsourced touchscreen 
participants and 30 lab-based participants from Experiment 
1, 101 new participants were recruited through MTurk and 

  
Figure 4. Average trial completion time (left) and error rate 

(right) for the direct comparison of lab-based participants to a 
roughly age-matched subset of crowdsourced participants in 

Experiment 1. (N=60 in total; error bars show standard error.) 
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were paid $4 to participate. This new set of participants was 
on average 33.8 years old (range 20–66, SD = 8.3) and 
consisted of 59 women and 42 men. All used an Apple iPad 
for the study and 93 reported at least daily touchscreen use. 

Procedure 
The procedure for the new participants was exactly the 
same as for crowdsourced touchscreen participants in 
Experiment 1, except that the new group was given no 
instruction on how to hold or place the device.  

Data and Analysis 
Of the new participants (i.e., crowdsourced participants 
without instruction on how to hold the device), two used 
first generation iPads that did not have a gyroscope, and are 
thus excluded from the analysis. After removing an 
additional participant-level outlier, 98 participants 
remained; across participants, 1.2% of trials were removed 
as temporal outliers. Of the 101 crowdsourced touchscreen 
participants from Experiment 1 (i.e., participants with 
instruction on how to hold the device), three used first 
generation iPads, leaving only 98 participants in that group 
as well. As with Experiment 1, no lab-based participants 
were excluded as participant-level outliers. 

We computed six measures from the accelerometer and 
gyroscope data: extraneous movement of the device, 
defined as the standard deviation of the accelerometer 
values in x, y, and z directions, and device orientation, 
based on the average gyroscope rotation around the x, y, 
and z axes. The device axes are shown in Figure 6. 
Gyroscope rotation around each axis ranges from -180° to 
180°, but we take the absolute value of the rotation because 
we are interested in deviation from zero—for a perfectly 
horizontal orientation, rotations around the x and y axes are 
both zero. We also compare trial completion time and error 
rate, repeating a subset of the analysis from Experiment 1 
but including the new participant group. For timing data, 
we again apply a log-transform and use a parametric test 
(one-way ANOVA), while we use separate non-parametric 
Kruskal-Wallis tests for all other measures to address 

normality issues. A Bonferroni adjustment was applied to 
all posthoc pairwise comparisons. 

Results 
Figures 7 and 8 show the extraneous touchscreen device 
movement and device rotation results.  

Extraneous Device Movement  
As shown in Figure 7, the average values for extraneous 
device movement were lowest with the lab-based group on 
all three axes, increasing for the crowdsourced group with 
instruction, and again for the crowdsourced group without 
instruction. Kruskal Wallis tests for each axis of movement 
showed that there were significant differences across the 
groups (x axis: χ2

df=2 = 43.11, p < .001; y axis: χ2
df=2 = 

50.65, p < .001; z axis: χ2
df=2 = 62.99, p < .001). Posthoc 

pairwise comparisons for each of the three axes using Mann 
Whitney U tests showed that the lab-based group had 
significantly lower extraneous device movement than both 
of the crowdsourced groups on all axes (all p < .05), and 
that the crowdsourced group with instruction had 
significantly lower movement on all three axes than the 
group without instruction (all p < .05). In other words, 
extraneous device movement increased as control decreased 
in terms of the environment, the instructions, or both.  

Device Orientation 
If the iPad is placed on a horizontal surface, orientation 
around the x and y axes should theoretically be zero, while z 
would vary. We thus focus on the x and y axes. As shown in 
Figure 8, rotation around these two axes increased as 
experimental control decreased. Kruskal Wallis tests for 
each axis of rotation showed that these differences were 
significant across the groups for both the x axis (χ2

df=2 = 
77.23, p < .001) and the y axis (χ2

df=2 = 43.98, p < .001). 

The angle of rotation was most pronounced around the x-
axis—that is, tilting the top of the device closer to or farther 
from the user—where rotation varied from 1.21° on average 
(SD = 0.16) for the lab-based group to 32.26° (SD = 22.24) 
for the crowdsourced group without instruction. Rotation 
around the y-axis (tilting the device to the left or right) 
ranged from 0.58° on average (SD = 0.32) for the lab-based 
group to 5.99° (SD = 13.18) for the crowdsourced group 
without instruction. Posthoc pairwise comparisons using 
Mann Whitney U tests showed that both crowdsourced 
groups rotated the device more than the lab-based group 
along the x and y axes, and that the crowdsourced group 
without instruction did so more than the group with 
instruction (all comparisons p < .05). 

For the z axis, there were no significant differences in 
rotation, as expected. Average rotations were 156.31° (SD = 
72.38) for the lab-based group, 173.99° (SD = 86.81) for 
the crowdsourced group with instruction, and 170.92° (SD 
= 91.65) for the crowdsourced group without instruction. 

Finally, of the 98 crowdsourced participants who did not 
receive instruction on how to hold/place the device, only 12 
placed it approximately flat (absolute rotation of less than 

 
Figure 5. Device placement instructions for crowdsourced 

touchscreen participants in Experiment 1. This message was 
omitted for participants without instruction in Experiment 2. 
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5° around both the x and y axes). In contrast, 62 of the 
crowdsourced participants with instruction placed the 
device flat—although this means that more than a third of 
this group still deviated from the study protocol. Lab 
participants all placed the device flat. 

Trial Completion Time and Error Rate 
Although two of the three participant groups here were 
included in Experiment 1’s timing and error rate analyses, 
we conduct a secondary analysis to assess how that original 
data compares to the new crowdsourced group without 
instruction. For trial time and accuracy, the crowdsourced 
group without instruction was similar to that with 
instruction: average trial time of 765ms (SD = 215) and 
error rate of 6.8% (SD = 4.9) compared to 804ms (SD = 
220) and 6.4% (SD = 5.0) for crowd participants with 
instruction. The lab group’s average trial time was 832ms 
(SD = 185) and error rate was 3.0% (SD = 2.0). 

These differences translated to a significant effect of 
participant group on error rate (Kruskal Wallis: (χ2

df=2 = 
24.74, p < .001) but not on trial time (one-way ANOVA: 
F2,223 = 1.78, p > .05, η𝑝𝑝

2 = .02). Posthoc pairwise 
comparisons for error rate showed that the lab-based 
participants made fewer errors than both of the 
crowdsourced groups (p < .05), but there was no significant 
difference between the two crowdsourced groups.  

Summary 
As experimental control decreased—from the lab setting to 
the remote setting to removing the device placement 
instruction—both extraneous device movement and rotation 
of the device significantly increased. While our study 
design does not allow us to draw conclusions about 
causality, the result suggests that the decreased touchscreen 
input accuracy of crowdsourced participants in Experiment 
1 may be related to the difficulty of controlling posture 
during mobile device testing outside of the lab setting. 
Interestingly, however, there were no timing or error rate 
differences between the two crowdsourced groups, 
suggesting that the differences between lab-based and 
crowdsourced participation is much larger than the impacts 
of tweaking instructions for crowdworkers. 

DISCUSSION  
Our findings show that collecting input performance data in 
the lab can differ from using a paid online crowdsourcing 
service such as MTurk. These differences were evident both 
in the conclusions reached by analyzing the lab-based and 
crowdsourced data separately and in statistically significant 
differences from a direct comparison between the two 
groups. In particular, the crowdsourced participants were 
more error prone with the touchscreen than the mouse, a 
finding that was opposite to the lab-based participants. An 
age-matched subset of crowdsourced participants also made 
a different speed-accuracy tradeoff than the lab-based 
participants, being faster and more error prone. Finally, 
extraneous mobile device movement and rotation of the 
device away from a horizontal position increased as 
experimental control decreased—from the lab to online to 
removal of instructions on device placement—and is a 
potential cause of the different conclusions regarding 
mobile input accuracy between the lab and the crowd. 

These findings contrast those from Komarov et al.’s [21] 
crowdsourcing versus lab study with desktop interaction 
techniques. Indeed, their study found no “significant or 
substantial differences in the data collected in the two 
settings.” The contrast is likely due both to the inclusion of 
the mobile device and to the larger sample size in our study 
(i.e., 30 in-person participants compared to only 10–14 per 
experiment in [21]). Another difference, however, is in the 
tasks used. Komarov et al.’s bubble cursor experiment is 
most similar to our tasks, while their use of split menus and 
split interfaces could have incurred greater cognitive 
overhead and thus impacted results differently. 

Considerations for Crowdsourced vs. Lab-based HCI 
Performance Studies 
Our study shows that researchers cannot expect that 
crowdsourced data collection for performance experiments 
will directly reflect what would have been found in a more 
controlled setting, particularly for mobile input but also for 
desktop interaction techniques. The question, then, is which 
data source to use and when? While the best choice will 
ultimately depend on the individual study and its goals, the 

 
  

Figure 6. Device axes used for 
accelerometer and gyroscope 

analysis. If device is horizontal, 
rotations around x and y should 

theoretically be zero. 

Figure 7. Extraneous device movement, 
increasing along all axes as experimental 

control decreases from lab to crowdsourced 
with and without instruction. (N=226 in total; 

error bars show std error.) 

Figure 8. Rotation of the tablet, which increased as 
experimental control decreased: from lab to crowd 
to no placement instruction. The z-axis is not shown 

because all z-axis rotations are equally valid. 
(N=226 in total; error bars show std error.) 

0

0.05

0.1

0.15

0.2

0.25

x y z

Ac
ce

ler
om

et
er

 St
an

da
rd

 D
ev

iat
io

n 

Axis of Movement 

Lab Crowd With Crowd Without

0

10

20

30

40

50

x y

M
ea

n 
Ab

so
lu

te
 R

ot
at

io
n 

(d
eg

re
es

) 

Axis of Rotation 

Lab Crowd With Crowd Without

Online Experiments CHI 2017, May 6–11, 2017, Denver, CO, USA

6821



following are important considerations based on both our 
findings and our experiences in conducting this research. 

Ecological validity. Crowdsourced data is most useful if 
ecological validity is of high importance. Participants used 
their own computer setup for mouse input, different sizes of 
touchscreen tablets, and were more likely to hold their 
mobile device with a comfortable posture. Highlighting this 
lattermost point, only 12 of 98 participants in Experiment 2 
placed their device flat on the table when given no 
instructions on device placement. Lab-based participants 
can also be instructed to hold the mobile device in whatever 
way is comfortable, but even this instruction would still not 
capture the range of body postures that occur in a real 
setting (e.g., reclining on a couch vs. sitting at a table). 
Experimental control. The study testbed included several 
features to attain experimental control for remote 
participants, such as providing redundant textual and visual 
instructions for all tasks and for device placement, and 
detecting long periods of inactivity during the task to restart 
the affected trial afterward. Despite these measures, 
differences in speed-accuracy tradeoffs and in evidence of 
following the mobile device placement instruction were 
seen between the crowd and the lab.  
Participant incentives. Lab-based participants may feel a 
strong social bias to please the experimenter and follow 
instructions (i.e., a stronger observer effect), while online 
participation may feel more casual, resulting in instructions 
not being taken as seriously. For crowdsourced participants, 
there is also a strong financial incentive to complete tasks 
quickly, which could impact speed-accuracy tradeoffs; we 
saw evidence of this impact in the comparison of age-
matched participants. While it is not possible to determine 
from our study which data source ultimately better matches 
real-world behavior, these differences should be considered 
when interpreting results from either source and caution 
should be taken in comparing results across sources. 
Cost. While running individual crowdsourced participants 
is cheaper than lab-based participants (especially given the 
experimenter’s salary for lab sessions), a well-designed and 
vetted online testbed takes a substantial amount of time to 
build. In our case, this development cost was reasonable 
because of the scale of data we wanted to collect; the data 
reported here is part of a larger study. Another advantage is 
that, once built, it is trivial to collect more crowdsourced 
data (e.g., for the verification reported in the Procedure 
section comparing small- vs. medium-sized iPads).  
Overall, if a large amount of data is needed or ecological 
validity is of high importance, we recommend a 
crowdsourced approach despite the behavior differences 
seen between the crowd and the lab. For many smaller 
studies, however, a traditional lab experiment may be 
preferable. If opting for a crowdsourced study, well-
specified instructions with redundant text and visual 
information (e.g., Figure 5) can aid in imposing 
experimental control. We also suggest testing the online 
software thoroughly before deployment; indeed, we 

iteratively refined our instructions through pilot testing with 
tens of in-person and remote participants before the final 
deployment. Finally, when interpreting results from 
crowdsourced versus lab-based performance experiments, 
researchers should keep in mind potential differences in 
speed-accuracy tradeoffs and the degree to which mobile 
accuracy data, in particular, is valid. 
Limitations and Future Work 
Our study has limitations and leaves open opportunities for 
future work. First, the findings will generalize best to paid 
crowdsourcing services, such as MTurk. Other forms of 
remote participation, such as when there is an active remote 
facilitator or when data is collected within the context of a 
broader task (e.g., a mobile game [14,28]) may yield 
different results. Second, we did not collect data on what 
iPad size crowdsourced participants used, so we cannot 
directly analyze a potential effect of device size. However, 
the theoretical and empirical analysis presented in the 
Procedure section of Experiment 1 demonstrates that this is 
not likely a concern. Future similar studies, of course, 
should collect this data for completeness. Third, our data 
did not allow us to understand the exact cause of the extra 
mobile device movement seen from the crowdsourced 
participants. For example, some participants may have 
placed the iPad on a flat but soft surface like their lap, 
which would have resulted in more movement than a 
tabletop. It could be useful to collect this data through self-
report from remote participants or, alternatively, to 
experimentally control for a variety of common postures in 
a lab setting. Fourth, our study only included a basic set of 
input tasks. While the findings should largely translate to 
other desktop and mobile interaction techniques where 
measuring speed and accuracy is of utmost importance, it 
will be important to replicate the findings with more 
complex tasks that require more cognitive overhead.  

CONCLUSION 
We reported on two experiments to compare input 
performance data collected in person to that collected 
through a paid crowdsourcing service such as MTurk. Our 
findings show that study conclusions differ when analyzing 
data from the two sources separately—in particular, error 
rates when using a mobile touchscreen device were 
significantly higher than using a mouse for crowdsourced 
participants, whereas the opposite was true for lab-based 
participants. A potential contributing factor is that, with the 
mobile device, extraneous movement and variability in 
device orientation increased significantly as experimental 
control decreased, from the lab to the remote setting to 
removal of instructions on device placement. Crowdsourced 
participants were also significantly faster and more error 
prone than lab-based participants, perhaps due to 
differences in incentives. Overall, these tradeoffs should be 
considered by researchers who want to conduct HCI 
performance experiments using crowdsourcing methods. 
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