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On-body interaction, which employs the user’s own body as an interactive surface, offers several advantages over existing 
touchscreen devices: always-available control, an expanded input space, and additional proprioceptive and tactile cues that 
support non-visual use. While past work has explored a variety of approaches such as wearable depth cameras, bio-acoustics, 
and infrared reflectance (IR) sensors, these systems do not instrument the gesturing finger, do not easily support multiple 
body locations, and have not been evaluated with visually impaired users (our target). In this paper, we introduce TouchCam, 
a finger wearable to support location-specific, on-body interaction. TouchCam combines data from infrared sensors, inertial 
measurement units, and a small camera to classify body locations and gestures using supervised learning. We empirically 
evaluate TouchCam's performance through a series of offline experiments followed by a realtime interactive user study with 
12 blind and visually impaired participants. In our offline experiments, we achieve high accuracy (>96%) at recognizing 
coarse-grained touch locations (e.g., palm, fingers) and location-specific gestures (e.g., tap on wrist, left swipe on thigh). The 
follow-up user study validated our real-time system and helped reveal tradeoffs between various on-body interface designs 
(e.g., accuracy, convenience, social acceptability). Our findings also highlight challenges to robust input sensing for visually 
impaired users and suggest directions for the design of future on-body interaction systems. 

CCS Concepts1: • Human-centered computing~Gestural input • Human-centered computing~Mobile devices • 
Human-centered computing~Accessibility technologies   • Computing methodologies~Machine learning algorithms 
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1 INTRODUCTION 

On-body interaction, which employs the user’s own body as an interactive surface, is an emerging area of 
research that offers several advantages over existing touchscreen devices, particularly for non-visual use (e.g., 
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blind users). Taps, swipes, or other on-body gestures 
provide lightweight and always-available control (e.g., 
[17,21]) with an expanded input space compared to small-
screen wearable devices like smartwatches (e.g., 
[27,31,40,42]). In addition, the proprioceptive and tactile 
cues afforded by on-body input can improve eyes-free 
interaction (e.g., [10,32,35,57]) and enable accurate input 
even without visual feedback compared to the smooth 
surface of a touchscreen [18,45]. These advantages are 
particularly compelling for users with visual impairments, 
who do not benefit from visual cues and who frequently 
possess a heightened sense of tactile acuity ([15,39]). 

Reliably sensing on-body input, however, is an open 
challenge. Researchers have explored a variety of approaches such as cameras (e.g., [4,21,50]), infrared-
reflectance sensors [26,27,40], and bio-acoustics [20,28]. While promising, this prior work has not been 
specifically designed for or tested with visually impaired users, who likely have different needs and preferences. 
For example, blind users may encounter difficulty accurately aiming a camera (or other directed sensor) [25,55] 
and also rely more on their sense of touch [15,39] making it especially important to avoid covering the fingertips. 
Furthermore, prior work does not support complex gestures at multiple body locations. For example, Skinput 
[20] detects touches at a range of locations but not more complex gestures. In contrast, FingerPad [6] and 
PalmGesture [57] sense shape gestures performed on the fingertip or palm but cannot easily be extended to 
other locations. 

Our research explores an alternative approach called TouchCam (Figure 1), a custom designed finger wearable 
to support location-specific, on-body interaction. We previously demonstrated the feasibility of recognizing 
body locations from small skin surface images (1–2 cm) captured using a handheld camera [53]. However, this 
work did not include sensor fusion, use a wearable form factor, or function in real-time. In addition, [53]'s 
prototype could only recognize locations (not gestures), and the images were collected under carefully 
controlled conditions. In this paper, we build on that work and address these limitations. TouchCam combines 
data from infrared reflectance (IR) sensors, inertial measurement units (IMU), and a small camera to classify 
body locations and gestures using supervised learning. Because TouchCam instruments the gesturing finger, on-
body interaction is supported on a variety of locations within the user’s reach while also mitigating camera 
framing issues. TouchCam also enables new location-specific, contextual gestures that are semantically 
meaningful (e.g., tapping on the wrist to check the time or swiping on the thigh to control a fitness app). These 
features allow for flexible interface designs that can be customized based on needs of the application or user. In 
this paper, we explore four high-level research questions: 

RQ1. How well can we recognize location-specific on-body gestures using finger- and wrist-mounted sensors? 
RQ2. Which locations and gestures can be recognized most reliably using this sensing approach? 
RQ3. What tradeoffs must be considered when designing and building a realtime interactive on-body input system? 
RQ4. How accessible is this approach to users with visual impairments and what are their design preferences? 

To address these questions, we evaluated two prototype iterations across two studies. In Study I, we 
demonstrate feasibility through a controlled data collection study with 24 sighted participants who performed 
touch-based gestures using the first iteration of our prototype (TouchCam Offline). In offline experiments using 
classifiers trained per-user, we achieve 98% accuracy in classifying coarse-grained locations (e.g., palm, thigh), 
84% in classifying fine-grained locations (e.g., five locations on the palm), and 96% in classifying location-specific 
gestures. Informed by these results, we built a second prototype with updated hardware and software algorithms 

Fig. 1. TouchCam combines a finger-worn camera with 
wearable motion trackers to support location-specific, 
on-body interaction for users with visual impairments. 
See supplementary video for a demonstration. 

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article x. Publication date: December 2017. 



 
 

 

  
 
 

 
 

 
 

  
 

 

 

 

 

 

 
 

  
 

 
 

    

 

    
 

  

 
  

 

TouchCam: Realtime Recognition of Location-Specific On-Body Gestures • XX:3 

to support realtime on-body localization and gesture recognition (TouchCam Realtime). In Study II, we 
investigate the usability and potential of the realtime system with 12 blind and visually impaired participants. 
Our findings validate realtime performance with our target population and highlight tradeoffs in accuracy and 
user preferences across different on-body inputs. 

In summary, the primary contributions of this paper include: (i) two iterations of TouchCam, a novel finger-
worn camera system that uses machine learning to detect and recognize on-body location-specific gestures; (ii) 
a quantitative evaluation of our system’s accuracy and robustness across a variety of gestures and body 
locations; (iii) qualitative observations about the usability and utility of our on-body input approach for users 
with visual impairments; and (iv) design reflections for on-body gestural interfaces in terms of what locations 
and gestures can be most reliably recognized across users. While our prototype design is preliminary—we expect 
that future iterations will be much smaller and self-contained—our explorations build a foundation for robust 
and flexible on-body interactions that support contextual gestures at multiple body locations via supervised 
learning. Our primary focus is supporting users with visual impairments; however, our approach could also 
benefit users with situational impairments (e.g., while walking or conversing) or be applied as an input 
mechanism for virtual reality systems (e.g., for accurate touch-based input in eyes-free situations). All software 
code and hardware design files are open sourced and available here: https://github.com/lstearns86/touchcam. 

2 RELATED WORK 

Our research is informed by work on sensing on-body input, finger-worn input devices, and algorithms for 
texture classification and camera-based biometrics. 

2.1 Sensing On-body Input 

As noted in the Introduction, on-body input has several advantages over handheld or wearable touchscreen 
input (e.g., smartphones or smartwatches) offering a larger input surface and more precise touch input even 
without visual cues [18,45]. However, how to sense this input and what form it should take are still open 
questions. Researchers have investigated a wide variety of wearable sensing approaches, including cameras 
[4,10,19,21,50,54,57], IR [27,40–42], ultrasonic rangefinders [30,32], bio-acoustics [20,28], magnetic fields [6], 
electromyography (EMG) [35], electromagnetic phase shift [62], and capacitance sensors [30,35,48,58]. These 
approaches support a similarly wide variety of inputs, including discrete touches at different body locations 
[28,35,48], continuous touch localization on the hand or wrist similar to touchscreen input [4,21,50,62], and 
input based on 3D finger or arm positions [4,48,50]. We summarize a subset of this prior work alongside our 
own in Table 1, which helps highlight the diversity of sensing approaches and on-body interaction support. 
While these past approaches are promising, their sensor types and placements limit the types of interactions 
that they can support. 

First, the interaction space is often constrained to a small surface (e.g., wrist or arm) or to a narrow window 
in front of the user. Approaches using cameras mounted on the upper body (e.g., [10,19,21,54]) restrict 
interactions to a pre-defined region within the camera’s field of view. OmniTouch [21], for example, can only 
detect gestures on the hands or arms in a relatively small space in front of the user. Similarly, approaches using 
sensors mounted on one wrist or hand to detect gestures performed by the other hand (e.g., 
[4,20,27,28,30,41,50,57,58,62]) limit on-body interactions to a relatively small area around the sensors. Some 
approaches such as Touché [48] or iSkin [58] are more flexible but still require instrumentation at the target 
interaction location, which limits scalability. In contrast, our approach places sensors on the gesturing finger, 
supporting input at a variety of body locations within the user’s reach without requiring additional 
instrumentation. Further, while not evaluated in this paper, our system could be readily extended to interact 
with surfaces beyond the body. 
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Second, prior work attempts to either identify touched body locations or detect motion gestures but not both. 
For example, Touché [48] and Botential [35] can localize touch input at various locations on the body using EMG 
or capacitance sensors. However, these systems cannot recognize relative surface gestures such as directional 
swipes. In contrast, systems such as PalmGesture [57], SkinTrack [41], or WatchSense [50] can estimate precise 
2D touch coordinates, enabling complex gesture interactions like shapes. However, these methods require 
sensors affixed on or near the interaction surface to achieve such precision, and they therefore cannot easily be 
extended to recognize multiple locations. Our approach uses a small camera to identify touched locations, 
augmented by inertial and IR sensors for robust gesture recognition; together, these sensors enable location-
specific gestures. 

2.2 Finger-worn Input Devices 

TouchCam is worn on the  user’s gesturing  finger and is informed by the growing space of finger-mounted 
wearables (see [49] for a review). These devices come in many different form-factors (e.g., rings [2,38,43,51], 
nails [6], below the finger pad [61], or between the fingers [4]), and are used for many different purposes (e.g., 
reading [51], object/face identification [4,38], or gestural input [2,4,26,43]). For example, FingerPad [6] uses a 
paired magnet and magnetometer on the back of the user’s thumb and finger to enable subtle 2D gestural input, 
while Light Ring [26] uses a small gyroscope and IR sensor embedded in a ring to enable input on a variety of 
surfaces. We focus on touch-based input rather than midair gestures (e.g., [5]) because of the speed and accuracy 
advantages for non-visual use [45]. We also position our sensors above the gesturing finger to avoid interfering 
with the user’s touch sensitivity and to support flexible input at many different locations. 

Most closely related to our work are systems that include finger-worn cameras. EyeRing [38], for example, 
uses a camera ring to identify physical objects in the surrounding environment while HandSight [13,51,52], our 
own prior work, uses a tiny camera atop the finger to assist users with visual impairments in reading and 
exploring printed text. CyclopsRing [4] uses a fisheye lens camera clipped between the fingers to detect one-
handed gestures or touch gestures from the user’s other hand; however, as discussed above, it cannot easily 
extend to other locations to support location-specific gestures. Magic Finger [61], which partially inspired our 
approach, uses a tiny camera and an optical mouse sensor worn below the pad of the finger to support touch 
input on almost any surface, as well as texture-based identification of that surface. However, only two body 
locations were evaluated and location-specific gestures were not investigated. 

Building on the above, we investigate a different set of sensors (optical and inertial), broaden the on-body 
interaction possibilities (e.g., location-specific gestures), and evaluate a larger number of on-body locations (15 

System Name Sensor type Sensor placement On-body Interaction Space Interaction type 

OmniTouch [21] 

Touché [48] 

CyclopsRing [4] 

Camera (Depth) 

Capacitive 

Camera (RGB, Fisheye 
Lens) 

On the shoulder 

Flexible (one on wrist, one 
elsewhere on body) 

Between fingers of passive hand 
(for on-body input) 

On or above the hands or arms 
(limited by camera FoV) 

Flexible (requires the target 
location to be instrumented) 

On or above the instrumented 
hand 

Continuous touch locations 

Discrete touch locations, body or hand 
pose 

Continuous touch locations, touch 
gestures, hand pose 

Botential [35] EMG, capacitive On the wrist (or arm, leg) Flexible, different body parts Discrete touch locations 

ViBand [28] 

SkinTrack [62] 

WatchSense [50] 

TouchCam (Our Work) 

Bio-acoustic 

Electromagnetic phase shift 

Camera (Depth) 

Camera (Grayscale), IMU, 
IR 

On the wrist 

On the wrist, ring on opposite 
hand 

On the wrist, facing toward 
fingers 

On top/side of the gesturing 
finger and wrist 

On the instrumented hand or arm 

On the skin surface around the 
instrumented wrist 

On or above the instrumented 
hand (limited by camera FoV) 

Flexible (does not require 
additional instrumentation) 

Discrete touch locations, non-directional 
gestures 

Continuous touch locations, touch 
gestures  

Continuous touch locations, touch and 
midair gestures 

Discrete touch locations, touch gestures 

Table 1. Overview of several recent on-body input approaches alongside our own work. 
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vs. 2 in Magic Finger, for example). We also evaluate our approach with visually impaired participants to explore 
their specific needs and behaviors, which may differ from sighted users. 

2.3 Texture Classification and Camera-Based Biometrics 

Work in biometrics has demonstrated that the skin of the hand—specifically, the palm and fingers—contains 
many distinctive visual features that can be used to identify individuals [7,36]. While skin features are 
commonly used for identification, they can also support on-body localization—as demonstrated by our initial 
work [53]. In [53], we extended biometrics algorithms, including those for partial fingerprint and palmprint 
recognition [12,24] as well as techniques that use webcam or mobile phone camera images for identification 
and verification [7,9,37,60]. We classified images of small patches of skin on the hand and wrist (patch size ~1-
2 cm2) captured with a handheld camera and achieved high accuracy (>96% across 17 body locations). Our 
algorithms relied primarily on a texture classification approach inspired by Magic Finger [61] with a local binary 
pattern (LBP) texture representation and a support vector machine (SVM) classifier. However, as noted in the 
introduction, our prior work was not wearable, did not function in real-time, only supported localization and 
not gesture recognition, the data was collected under carefully controlled conditions, and no user studies were 
conducted. This paper addresses each of those limitations. 

3 TOUCHCAM OFFLINE: INITIAL WEARABLE PROTOTYPE 

We describe our first prototype, TouchCam Offline, which we evaluate offline using data collected from a 
controlled study. Study I focuses on addressing RQ1 and RQ2: how accurately can we recognize location-specific 
on-body gestures and which locations and gestures can be recognized most reliably? Our results inform the 
development of a realtime prototype, which is evaluated in Study II (Section 5). 

3.1  Prototype Hardware 

The TouchCam Offline hardware consists of: (i) a finger-worn multi-sensor package that includes two infrared 
(IR) reflectance sensors, an inertial measurement unit (IMU), and a small camera with an adjustable LED for 
illumination; and (ii) a wrist-worn microcontroller with a second IMU, which simulates a smartwatch and 
provides additional sensing. The finger-based sensors are mounted on three laser-cut rings and positioned to 
avoid impeding the user’s sense of touch, which is particularly important for users with visual impairments. See 
Figure 2a. 

a b 

c 

Fig. 2. (a) TouchCam Offline showing the finger and wrist-worn sensors and microcontroller. (b) Fifteen fine-grained body 
locations (individual circles) within six coarse-grained locations (denoted by color), and (c) eight basic gestures. 
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Infrared Reflectance Sensors. The two IR sensors2 (each 2.9 mm × 3.6 mm × 1.7 mm) have a sensing range 
of ~2–10 mm and are used to detect touch events and to aid in recognizing gestures. Unlike Magic Finger [61], 
which places optical sensors directly on the pad of the finger, we mount the sensors on the sides of the front-
most ring, approximately 5 mm from the fingertip to avoid interfering with tactile sensitivity. 

Camera Sensor. A small (6 mm diameter) CMOS camera3 is mounted atop the user’s index finger, providing 
640 × 640 px images at up to 90 fps with a 30° diagonal field of view (FOV). We use grayscale images from the 
camera to classify the touch location, extracting both texture and 2D point features. We also estimate visual 
motion between video frames to assist in classifying gestures. The camera includes a manually adjustable lens 
with a focal distance that varies from 15 mm to ∞. Because distances shorter than 30–40 mm provide a very 
narrow range of focus, we positioned the front of the lens ~50 mm from the user’s fingertip. This setup provides 
an effective FOV of ~27mm across the diagonal when the finger is touching a surface. To prevent lateral rotation 
and to fix the FOV center near the touch location, the camera is attached to two rings 15 mm apart. A bright 
LED (3 mm diameter, 6000 mcd, 45° angle) mounted below the camera lens illuminates the touch surface 
regardless of ambient lighting. 

Inertial Measurement Units. Two IMUs4 are mounted on the user’s hand: one below the camera on the 
index finger and one on the wrist. We include two IMUs to examine the effect of sensor location on classification 
performance. The IMUs provide motion information at ~190 Hz, and each contains a three-axis accelerometer, 
gyroscope, and magnetometer. While the camera offers rich contextual information about a scene, its field of 
view and frame rate limit performance during quick motions. Therefore, the IMUs are our primary sensor for 
detecting motion and classifying gestures. The orientation of the gesturing finger and/or wrist may also be 
useful for distinguishing body locations (e.g., ear vs. thigh) although this is posture dependent. The IMUs are 
calibrated to correct magnetic bias and to establish a stable orientation estimate (described in Section 3.2). The 
calibration process consists of rotating the unit along each axis for a few seconds and is performed only once 
per study session—although future explorations may require repeated calibration to ensure long-term stability. 

Sensor Placement and Microcontroller. We designed custom laser-cut rings in multiple sizes (13–24 mm 
inner diameter in 0.5mm increments) with detachable sensors to fit each user. As shown in Figure 2a, the rings 
are worn on the index finger near the first and second joints. The IR and IMU sensors are controlled via a 
microcontroller5 mounted on a Velcro wristband, and the camera and microcontroller are connected to a 
desktop computer6 via USB cables. All data is logged, timestamped, and analyzed post hoc on a desktop. 

3.2  Input Recognition Algorithms 

To recognize localized on-body input, we developed a four-stage approach: (i) touch segmentation; (ii) feature 
extraction; (iii) location classification; (iv) gesture classification. The two classification stages—location and 
gesture—are trained individually for each user and combine readings from multiple sensors for robustness. 
While the algorithms described next could be trained on any arbitrary set of locations and gestures, in our study, 
we evaluated six coarse-grained body locations (fingers, palm, back of hand or wrist, ear, shoulder, and thigh) 
with 15 fine-grained locations (thumb/index/middle/ring/pinky finger, palm up/down/left/right/center, back of 
hand, outer wrist, ear, shoulder, and thigh) and 8 basic gestures (tap, swipe up/down/left/right, circle, triangle, and 
square)—see Figures 2b and 2c. These locations are visually distinctive and can be located easily even without 
sight while the gestures are simple shapes that can be drawn with a single touch down/up event. 

2 Fairchild Semiconductor QRE113GR 
3 Awaiba NanEye GS Idule Demo Kit 
4 Adafruit Flora LSM9DS0 
5 Sparkfun Arduino Pro Micro (5V/16MHz) 
6 Dell Precision Workstation, dual Intel Xeon CPU @2.1GHz, NVIDIA GeForce GTX 750Ti 
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Stage I: Touch Segmentation. Our input recognition algorithms receive a sensor stream consisting of 
video, IMU, and IR data. We segment this input stream by detecting touch-down and touch-up events using the 
IR sensor readings, which represent distance from the touch surface (lower values are closer). While for real-
world use, a segmentation approach would need to identify these touch events within a continuous stream of 
data, to evaluate this initial prototype we made several assumptions to simplify the process (we eliminated these 
assumptions for the realtime prototype, described later). Based on experiments with pilot data, we developed a 
straightforward threshold-based approach using a variable threshold that was set to 90% of the maximum IR 
value observed across the input stream for each trial. Within a trial, a touch-down event is triggered when either 
of the two IR values crosses below the threshold, while a touch-up event is triggered when both cross above the 
threshold. To be conservative, we assume that each trial contains a single gesture and segment the entire gesture 
from the first touch-down event in the trial to the last touch-up event. We crop each input stream to include only 
the sensor readings and video frames that occurred between the touch-down and touch-up event timestamps. 

Stage II: Feature Extraction. In Stage II, we extract static orientation and visual features for localization, 
and motion features for gesture classification. We describe each in turn below (see Table 4 in the Appendix for 
more details). 

Localization Features. To extract static features for localization, we first determine the video frame that has 
the maximum focus in the segmented sequence, since it is the most likely to contain recognizable visual features. 
We define focus as the total number of pixels extracted using a Canny edge detector [3] tuned with a small 
aperture ( 3) and relatively low thresholds (   100,  50) to detect fine details. While this approach 
does not account for all image quality problems—motion blur in particular can cause it to fail—it is highly 
efficient and, in general, detects a much greater number of edges for images that are in focus than for those that 
are not. We verified this trend empirically using pilot data. We then extract several features for the selected 
video frame, which include: (i) raw IR sensor readings, (ii) the estimated IMU orientation, (iii) image texture 
features for coarse-grained classification, and (iv) 2D image keypoints for geometric verification to distinguish 
between locations with similar textures (i.e., fingertips, palm locations, back of wrist or hand). 

The orientation of each IMU is estimated by applying a Madgwick filter [33] on a sequence  of raw  
accelerometer, magnetometer, and gyroscope readings resulting in a 4D orientation vector (i.e., quaternion). 
The filter is a standard sequential optimization approach to estimating IMU orientations that is updated at each 
time step. Our initial calibration procedure includes briefly rotating the device in all directions so that the filter 
can converge to an accurate orientation estimate. The orientation estimate at the selected video frame is used 
as a 4-dimensional feature vector (W, X, Y, and Z) for each IMU and concatenated into an 8-dimensional vector 
when both IMUs are used. 

The image-based features are extracted similarly to our prior work [53]: To represent image texture, we use 
a variant of local binary patterns (LBP) that is robust to changes in illumination and that achieves rotation 
invariance while exploiting the complementary nature of local spatial patterns and contrast information [16]. 
While we explored other common texture-based methods such as Gabor histograms [56] and wavelet principal 
components [11], we found that they offered negligible improvements over LBP despite their increased 
computational complexity. We extract uniform LBP patterns and local variance estimates from an image 
pyramid with eight scales to capture both fine and coarse texture information. Specifically, we use

/ ,  with 14 uniform pattern bins and 16 variance bins as defined in [16]. These values are 
accumulated into a histogram with 224 bins for each scale, all concatenated to obtain a 1792-element feature 
vector. To resolve ambiguities and ensure geometric consistency, we extract custom keypoints at locations with 
a high Gabor filter response at two or more orientations, which tend to lie at the intersections of ridgelines or 
creases. This approach was inspired by [23]. We use the Gabor energy in a 16 × 16px neighborhood around the 
keypoint as a descriptor extracted at multiple orientations to ensure rotation invariance. See [53] for full details. 

,
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Motion Features. For gesture classification, we extract motion features from the sensor readings within the 
segmented timeframe (these are treated independently from the localization features). We use three standard 
signal preprocessing steps on the raw IMU and IR sensor readings: smoothing, normalization, and resampling. 
We first smooth the raw values using a Gaussian filter (σ =13, optimized based on pilot data) to reduce the effect 
of sensor noise and then normalize the smoothed sequence by subtracting its mean and dividing by its standard 
deviation. To obtain a fixed length sequence for robustness to variations in speed, we resample the sensor 
readings using linear interpolation at 50 equally spaced discrete time steps. These values, however, are still 
sensitive to small variations in speed and orientation. Thus, similar to [59], for each IMU and IR sensor we 
compute summary statistics for windows of 20 samples at 10-step increments (i.e., four windows): mean, 
minimum, maximum, median, and absolute mean. Finally, for the 50 resampled accelerometer, magnetometer, 
and gyroscope readings, we compute x-y, x-z, and y-z correlations. The result is 639 features for each IMU and 
70 for each IR sensor, which we concatenate into a single feature vector to use when classifying gestures. 

We also extract motion features from the video frames between the touch-down and touch-up events. 
Because we support touch-based gestures only on flat or nearly flat surfaces, it is sufficient to estimate a global 
2D motion vector for each frame; we do so using a template-matching approach. First, we down-sample each 
image from 640 × 640px to 160 × 160px resolution for efficiency and noise robustness. Next, for each frame we 
extract a 40 × 40px region centered within the previous frame to use as a template, which we then match against 
the current frame using a sliding window to compute the normalized cross-correlation [29]. The position of the 
pixel with the highest cross-correlation value identifies the most likely displacement between frames, yielding 
a 2D motion vector estimate. Because images with higher contrast are more likely to yield reliable motion 
estimates, we weight each motion vector by an estimate of the frame’s contrast (the image variance). As with 
the other motion features, we smooth the motion estimates by applying a moving average (window size = 10). 
We then re-sample 50 points from this sequence of motion vectors and compute summary statistics as with the 
IMU and IR sensor readings to obtain a fixed-length vector of 140 features for use in gesture classification. 

Stage III: Localization. Once we have extracted localization and motion features, we begin independently 
classifying on-body locations (Stage III) and gestures (Stage IV). For localization, we rely primarily on static 
visual features from the camera with IMU orientations and IR reflectance values to resolve ambiguities. 

Our image-based touch localization algorithms function identically to our prior work [53]. We use a two-
level location classification hierarchy: first classifying the location as one of the six course-grained regions then 
refining that location estimate where possible to finer-grained regions. In our offline user study (Study I), coarse-
grained regions include fingers, palm, back of hand or wrist, ear, shoulder, and thigh while fine-grained regions 
include specific fingertips, locations on the palm, and on the back of hand versus the wrist (Figure 2b). Some 
coarse-grained locations are not subdivided at this second level due to a lack of distinctive features—in the case 
of our study, the ear, shoulder, and thigh are not subdivided. We first classify the texture features into a coarse-
grained location using an SVM7 then perform template matching against only the stored templates from that 
location to estimate the fine-grained location. Finally, we perform geometric verification using the extracted 2D 
point features to ensure a correct match. 

At both levels of the classification hierarchy, we resolve ambiguities using a sensor fusion approach. We 
combine predictions based on the static visual features from a video frame with predictions based on the IMU 
orientation and IR reflectance features with the same timestamp as that frame. Since the scales, lengths, and 
types of these feature vectors are all very different, rather than concatenating the features for use with a single 
classifier we instead train a separate SVM with a Gaussian kernel on the non-visual features. To robustly 
combine the predictions from the two disparate localization classifiers (one for the camera features and one for 
the IR and IMU features), we first tune the SVMs to output normalized probability predictions for each class 

7 Aforge.NET: http://www.aforgenet.com (used for all SVM and neural network classifiers) 
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using Platt scaling, as is standard [47]. We concatenate these predictions into a single feature vector, which we 
then use to train a third sensor fusion classifier that automatically learns how to prioritize sensors based on 
prediction confidence and location class. Inspired by [8], we use a feedforward neural network for this sensor 
fusion classifier. Our network has one fully connected hidden layer for flexibility of functional representation, 
and a softmax output layer for multiclass output; it is trained using resilient backpropagation [34]. The final 
output of our classification process is a combined location prediction from among the six coarse-grained and 
fifteen fine-grained classes with approximate likelihoods for each class (sorted from most to least likely). 

Stage IV: Gesture Classification. Gesture classification is performed independently of localization using 
an additional SVM. As with texture, SVM classifiers are commonly used for classifying gesture features because 
they are robust and efficient for problems with high dimensionality. We use a linear kernel with feature weights 
that were optimized for performance across all participants. For the evaluation presented in Section 3.4, we 
trained an SVM to classify the following gestures as shown in Figure 2c: tap, swipe up, swipe down, swipe left, 
swipe right, circle, triangle, and square. 

3.3  Study I: Data Collection and Dataset For Offline Experiments  

To evaluate our initial prototype and algorithms, we performed offline experiments using data collected from 
twenty-four participants. Each participant performed a series of location-specific on-body input tasks with our 
hardware prototype. We were specifically interested in investigating our first two research questions 
enumerated in the Introduction: (i) How accurately can we recognize location-specific on-body gestures with a 
finger-worn camera and auxiliary sensors (IMU, IR)? (ii) Which body locations and gestures can be recognized 
most reliably using our approach? 

Participants. Twenty-four right-handed participants (16 female) were recruited via campus e-mail lists and 
word of mouth. Their average age was 28.9 (SD=7.95, range=19–51). All participants had normal vision as the 
goal of this study was to assess our algorithms and not issues related to usability or accessibility. Participants 
were compensated $25 for their time. 

Data Collection Apparatus. During data collection, participants wore the TouchCam Offline prototype. 
As described in Section 3.1, we selected ring sizes to fit the participant’s finger and adjusted positioning to 
ensure a consistent sensor range. A custom application written in C displayed visual task prompts and a live 
feed from the finger-worn camera to assist with framing the target locations (Figure 3a). All IMU and IR sensor 
readings and camera video frames were logged with timestamps along with ground-truth touch location and 
gesture labels for each trial.  

(a) Participant following on-screen data collection protocol (b) Example skin images from Study I 

Fig. 3. (a) Data collection setup showing our prototype, location and gesture instructions, and camera video feed. (b) 
Example skin-surface images recorded by our finger-mounted camera (fingerprint images omitted to protect our 
participants’ privacy). 
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Procedure. The procedure lasted up to 90 minutes. After a brief demographic questionnaire and setup period 
(i.e., selecting rings, putting on the prototype), participants completed the following tasks, in order: 

1. Location-specific touches. Participants touched and held their finger in place at 15 locations (Figure 2b) with each 
location prompted visually on a monitor (Figure 3a). After confirming the location and image quality, the 
experimenter logged the current location (e.g., timestamp, location label) and triggered the start of the next trial. 
Participants completed 10 blocks of trials, where each block consisted of a different random permutation of the 15 
locations (150 trials in total). In total, this dataset includes 3600 location-specific touches across all participants. 
Example images are shown in Figure 3b. 

2. Location-specific gestures. Participants performed the eight basic gestures: tap, swipe up, swipe down, swipe left, 
swipe right, circle, triangle, and square (Figure 2c) at three body locations: the palm, wrist, and thigh. These locations 
were selected from the 15 locations in the first task because they are easy to access, unobtrusive, and have a 
relatively large input area thus allowing for more complex gestures. As with the first task, participants completed 
10 blocks of trials, where each block consisted of a different random permutation of the 24 gesture and location 
combinations (240 trials in total). This dataset includes 5,760 location-specific gestures across all participants. 

3.4  Study I: Offline Experiments and Results 

To investigate the accuracy of our location and gesture classification algorithms, we performed a series of offline 
experiments using the gathered data. Below, we evaluate coarse-grained localization, fine-grained localization, 
and location-specific gesture classification as well as the effect of each sensor on performance (e.g., finger-worn 
vs. wrist-worn IMUs). We compare sensor combinations using paired t-tests and Holm-Bonferroni adjustments 
to protect against Type I error [22]. 

Training and Cross Validation. All of our experiments use leave-one-out cross validation and train and 
test on a single user’s data. Specifically, each experiment uses all available data from a single participant for 
training the location and gesture classification SVMs with a single sample set aside for testing. The localization 
and gesture classifiers are trained independently. The experiment is repeated for each sample and averaged 
across all possible combinations. 

Touch Localization. To examine the accuracy of our on-body localization algorithms, we used the location-
specific touch dataset. Since our localization approach is hierarchical, we analyze performance at both the 
coarse-grained level (6 classes) and the fine-grained level (15 classes). 

We first report primary localization results using all available sensor readings (i.e., sensor fusion results). At 
the coarse-grained level, we achieve 98.0% (SD=2.3%) average accuracy. This is reduced to 88.7% (SD=7.0%) at 
the fine-grained level. Table 2 shows the accuracy breakdown by class. The worst performing coarse-grained 
classes were the wrist/hand and ear, both at 93.8%, possibly due to their highly variable appearance and fewer 
distinctive visual features. In contrast, the fingers and palm perform best at 99.6% and 99.1% respectively 
although the individual fine-grained classification accuracies were lower. These results suggest that care must 
be taken in selecting body locations that are both visually distinctive and easy for participants to return to 
repeatedly. A qualitative analysis of our dataset revealed issues that account for some of the error: 
approximately 5% of the images gathered had focus, contrast, or illumination issues that interfered with 

Palm Fingers Wrist/Hand Ear Shoulder Thigh 
Palm 99.1% 0.5% 0.4% 0.1% 

Fingers 0.3% 99.6% 0.1% 
Wrist/Hand 5.0% 0.2% 93.8% 0.2% 0.6% 0.2% 

Ear 4.2% 0.4% 1.2% 93.8% 0.4% 
Shoulder 0.8%  0.4% 98.8% 

Thigh 2.3%  0.4% 97.3% 

Up Down Left Right Center 
Palm 84.6% 78.5% 85.0% 83.1% 91.5% 

Thumb Index Middle Ring Pinky 
Fingers 93.1% 85.4% 81.5% 88.1% 91.9% 

Outer Wrist Back of Hand Ear Shoulder Thigh 
87.3% 88.8%  93.8%  98.8% 97.3% 

(a) Coarse-grained Accuracy (b) Fine-grained Accuracy 

Table 2. Classification percentages averaged across 10 trials and 24 participants. (a) Accuracy for the six coarse-grained 
classes. Each cell indicates the percentage of images assigned to a predicted class (column) for each actual class (row); 
empty cells indicate 0%. (b) Accuracy for the 15 fine-grained classes, grouped by corresponding coarse-grained class. 
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Out of Focus Too Dark or Poor Contrast Oversaturated 

Fig. 4. Approximately 5% of the images we collected had poor focus, contrast, or illumination, preventing robust feature 
extraction. We adjusted the camera and LED to mitigate these issues for TouchCam Realtime. 

extracting recognizable image features; see Figure 4. We took steps to mitigate these problems for the next 
iteration of TouchCam. 

To investigate the effect of each sensor on localization performance, we repeated the classification 
experiment with the sensors individually and in combination. As expected, the camera is by far the most 
accurate single sensor for classifying location, with a coarse-grained accuracy of 97.5% (SD=2.6%) followed by 
the finger-based IMU at 75.6% (SD=11.6%). Notably, the camera is significantly better even compared to the 
87.5% (SD=7.0%) accuracy of combining all other sensors (p<0.001, t23=7.12, d=1.92). No significant differences 
were found between the camera alone or combined with other sensors, which suggests that the camera alone is 
sufficient for course-grained classification. At the fine-grained level, the camera is again the most accurate 
sensor (84.0%) even compared to all other sensors in combination (52.9% accuracy; SD=12.0; p<0.001, t23=16.74, 
d=2.99). But, unlike at the coarse-grained level, adding any of the other three sensors to the camera further 
increases accuracy, with the highest accuracy (88.7%) resulting from the combination of all available sensors. 

Location-Specific Gesture Classification. To explore the possibility of supporting location-specific 
gestures, we conducted a classification experiment with the data from the location-specific gesture task (24 
classes: 3 locations × 8 gestures). First, we classified the location using the image features from the camera 
(extracted from the video frame with maximal focus as described above). Since the location features from the IR 
and IMU sensors did not make a significant difference at the coarse-grained level, we omitted them here. 
Location accuracy for these three locations was 99.1% (SD=1.0%). Next, we classified the gesture using the 
motion features from all of the sensors (IMU, IR, and camera) achieving an accuracy of 96.6% (SD=2.6%). Finally, 
we combined the classification predictions and calculated the overall location-specific gesture classification 
accuracy across all 24 classes, which was 95.7% (SD=3.2%).  

As a secondary analysis, we again examined classification accuracy as a function of each sensor (Figure 5) 
but this time for the 24 location-specific gestures. In general, adding more sensors significantly improves 
classification accuracy, although as a practical matter the differences between the pair of IMUs and other more 
complex combinations are fairly small (see the Appendix for statistical comparisons). 

Efficiency. For our initial prototype and algorithm development, our primary aim was to investigate the 
feasibility and accuracy of our approach rather than develop a realtime system. As such, our TouchCam Offline 
algorithms are slow. On our desktop computer (the Dell Precision Workstation described in Section 3.1), the 

Average Classification Accuracy for Each Sensor Combination 
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Fig. 5. Mean classification accuracy using different sensor combinations to classify location-specific gestures. Boxes indicate 
the best sensor combinations as additional sensors are added, with each box significantly outperforming the last (from left 
to right). There was no significant difference between the finger- and wrist-mounted IMUs. 
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image feature extraction and localization stages required, on average, two seconds per frame to process and 
classify an image. The most computationally demanding stage was the geometric verification process, which 
required approximately 243,000 feature comparisons on average. The other stages’ computation times are 
comparatively negligible. 

3.5  Summary of Study I Findings 

Our results address our first two research questions demonstrating the feasibility of recognizing location-
specific gestures using finger- and wrist-worn sensors. While our experiments show advantages with sensor 
fusion when classifying both location and gesture, the practical differences are relatively small suggesting that 
we can simplify our algorithms by using each sensor type for the task for which it is best suited (i.e., IR sensors 
for touch detection, camera for localization, and IMUs for gesture recognition). Individual accuracies per 
location suggest limits to the localization granularity of our algorithms, which performed well (≥98%) for coarse-
grained locations but were less accurate (89%) for fine-grained locations. These results could likely be improved 
with better camera hardware (e.g., higher resolution, autofocus) and with more complex finger/palm print 
recognition algorithms. However, the high accuracy during our location-specific gesture experiment (96%) 
suggests that such steps may not be necessary for us to begin investigating these interactions with visually 
impaired users. We built upon these findings to implement the next iteration of TouchCam, described below. 

4 TOUCHCAM REALTIME: IMPROVED INTERACTIVE PROTOTYPE 

Based on our Study I findings, we designed TouchCam Realtime, a realtime version of our offline system with 
updated hardware and algorithms. We first describe key changes to improve robustness and enable realtime 
interactions (addressing RQ3) before validating the new classification algorithms using the Study I data.  

4.1 Realtime Prototype Hardware 

TouchCam Realtime’s hardware (Figure 6) embeds all finger-mounted components in a single unit, which is 
attached to the user’s finger using a pair of Velcro strips to allow greater freedom of motion than the rigid rings 
from the previous version. This updated design is more stable and durable. The camera and IR sensors are 
repositioned to capture more consistent images and improve the reliability of touch detection, respectively. 
Although Study I found an accuracy advantage when using two IMUs (~4%), we decided to remove the wrist-
mounted IMU to simplify our hardware and algorithms. We compensated for the potential drop in accuracy by 
doubling the remaining (finger-mounted) IMU’s sampling rate. This change reduced the number of features 
used to classify gestures and the number of examples needed for training. 

a b 

Fig. 6. (a) TouchCam Realtime prototype showing the finger and wrist-worn sensors and wrist-worn microcontroller. (b) 
Comparison between TouchCam Offline and Realtime hardware. 
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4.2  Realtime Input Recognition Algorithms 

We made several changes to our input recognition algorithms to support realtime operation. First, we optimized 
our localization algorithms to run in realtime on a GPU and removed the computationally costly geometric 
verification step. Second, we updated the touch detection stage to support continuous use. Finally, we improved 
the gesture recognition stage, making it more robust to changes in orientation and pose. 

Localization Algorithm Changes. As noted previously, our offline localization algorithms required up to 
two seconds per frame, primarily limited by geometric keypoint matching between image templates. Simply 
removing keypoint matching increased our frame rate from 0.5fps to ~18.5fps, but with a ~9% reduction in Study 
I’s fine-grained localization accuracy. To address this loss, we made three updates to our localization algorithms. 
First, we used an alternate LBP algorithm that better preserved spatial features [64], which increased the number 
of texture features per image from 1792 to 15,552. Second, we averaged class probability predictions across 20 
video frames, a number selected after pilot tests to balance accuracy and latency. And third, we reduced the 
number of fine-grained locations, omitting the five fingertip locations evaluated in Study I. This decision was 
not solely due to algorithmic performance—the fingertips proved difficult for participants to capture reliably 
even with visual feedback due to the sensors’ positioning and small field of view. Also, while the fingertips are 
convenient locations for static touch-based input, they are too small to easily support gestural input. Finally, we 
implemented parallel GPU versions of our algorithms, which further improved the localization speed to 35.7 fps. 

Touch Detection Algorithm Changes. To improve robustness and support continuous use, we made 
minor changes to the touch detection algorithms. We applied a moving average filter to the IR values to reduce 
sensor noise (window size = 50ms), and triggered touch-down and touch-up events when the sensors crossed a 
fixed threshold that was the same across all users rather than derived per gesture as with the offline system. 
This threshold was fixed at 90% of the maximum possible value the sensor could register, which we determined 
empirically to be robust to changes in ambient lighting and to work well for skin and clothing surfaces. To 
ensure that we captured the full gesture (and to support the double-tap gesture), we placed a delay of 100ms on 
the touch-up event and canceled it if the user touched down again within that period. 

Gesture Recognition Algorithm Changes. Lastly, we made improvements to the gesture recognition 
algorithms. To compensate for variations in orientation and pose when performing gestures, we first rotated 
the IMU sensor readings relative to the estimated orientation at the start of the gesture (the touch-down event). 
We discarded the magnetometer readings after this step since they were still overly sensitive to orientation and 
location. These changes allowed us to build a pre-trained cross-user gesture classifier with 1,720 samples in 
place of the individual classifiers used in Study I. 

4.3 Validation of Realtime Algorithms 

To test our updated algorithms and establish a performance benchmark for our realtime system, we conducted 
classification experiments on the data gathered during Study I. The average 10-fold cross-validation accuracy 
on the location-specific touches dataset was 97.5% (SD=2.4%) at the coarse-grained level (6 classes) and 84.5% 

Palm Fingers Wrist/Hand Ear Shoulder Thigh 
Palm 98.5% 0.8% 0.5% 0.1%  0.1% 
Fingers 0.3% 99.7% 
Wrist/Hand 4.0% 0.4% 95.4% 0.2% 
Ear 5.4% 2.1% 92.1% 0.4% 
Shoulder 1.7% 0.4% 2.1% 95.4% 0.4% 
Thigh 1.7% 2.1% 0.4% 95.8% 

Up Down Left Right Center 
Palm 83.8% 82.5% 80.8% 85.4% 89.6% 

Thumb Index Middle Ring Pinky 
Fingers 92.1% 71.3% 71.3% 73.8% 79.6% 

Outer Wrist Back of Hand Ear Shoulder Thigh 
87.5% 85.8%  92.1%  95.4% 95.8% 

(a) Coarse-grained Accuracy (b) Fine-grained Accuracy 

Table 3. TouchCam Realtime performance on Study I dataset. (a) Coarse-grained classification percentages, averaged across 
10 trials and 24 participants. Each cell indicates the percentage of images assigned to a predicted class (column) for each 
actual class (row). (b) Fine-grained classification percentages, averaged across the corresponding coarse-grained classes. 
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(SD=8.2%) at the fine-grained level (15 classes), which is nearly identical to the TouchCam Offline system—see 
Table 3. The five finger locations were most impacted by the removal of the geometric verification step. 
Localization accuracy on the location-specific gestures dataset remains similarly high at 98.6%. As mentioned 
above, efficiency increased considerably: from 0.5fps to 35.7fps (a ~70x speedup). 

5 STUDY II: REALTIME EVALUATION WITH VISUALLY IMPAIRED PARTICIPANTS 

To assess the performance and accessibility of TouchCam Realtime under more realistic conditions and with 
our target population (RQ4), we conducted a second study. We recruited 12 blind and visually impaired 
participants who performed common interactions with TouchCam such as checking the time or reading text 
messages. We focus primarily on issues impacting the accuracy and usability of our system (see [46] for more 
about the interaction designs and participant feedback). 

5.1  Study II: Method 

Participants completed an adaptive calibration procedure for training and then used TouchCam Realtime to 
perform tasks using three on-body interaction techniques. 

Participants. Twelve participants (7 female, 5 male) were recruited through email lists, local organizations 
for people with visual impairments, and word of mouth. Nine participants were blind and three had low vision. 
The average age was 46.2 years old (SD=12.0, range=29–65). All participants were smartphone users (11 iPhone, 
1 Android) and all reported using a screenreader either “all” or “most” of the time. Participants were 
compensated $60 for time and travel. 

Apparatus. Throughout the study, participants wore the TouchCam Realtime prototype on their dominant 
hand. We assisted participants with putting on the ring and wristband and adjusted positioning to ensure 
consistent sensor readings. A custom C# application controlled a semi-automated training process, provided 
audio and synthesized speech cues during the tasks, and displayed a camera and sensor view for the researcher 
to ensure correct positioning. All sensor readings and video frames were logged with timestamps. 

Location and Gestures. Based on observations made during Study I, we refined the locations and gestures 
for Study II. We reduced the coarse-grain set from 6 to 4 locations and the fine-grain set from 15 to 9 locations. 
Specifically, we replaced the back-of-the-hand location with the inner wrist due to inter-class similarity with 
the outer wrist, removed the shoulder location for ergonomic reasons, and removed the five finger locations 
because without 2D keypoint matching and geometric verification, classification accuracy for this region was 
considerably lower. The updated set of locations included: the palm (up, down, left, right, and center), the wrist 
(inner and outer), the thigh, and the ear (Figure 7). 

While Study I showed that TouchCam can support a variety of touch-based gestures, for Study II we 
specifically modeled our interactions after Apple’s VoiceOver8 and Google’s TalkBack9—two popular gesture-
based mobile screenreaders for non-visual use. In total, we support 6 gestures, including: swipe left or swipe 
right to move between menu items and double-tap to select an item. We also included a single-tap gesture to 
repeat a voice prompt, a swipe-down gesture to go to the previous menu, and a tap-and-hold gesture to select 

Palm Up Palm Down Palm Left Palm Right Palm Center Inner Wrist Outer Wrist Ear Thigh 

Fig. 7. Sample image data collected with TouchCam Realtime. All images selected from different participants. 

8 http://www.apple.com/accessibility/ios/voiceover/ 
9 https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback 
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location-specific items. The tap-and-hold gesture was recognized by an 800ms timeout after the touch-down 
event while the other gestures were recognized using a pre-trained SVM classifier (as described in Section 3.2). 
These gestures can be performed at any body location. 

Training Procedure. To limit the amount of time needed to train our system, we implemented an adaptive 
training procedure inspired by boosting [14]. After capturing a single image of each of the nine locations for 
initialization, participants then moved their finger around each location in a fixed order as the system 
continuously classified the video frames. Whenever a video frame was misclassified, that frame and the current 
location label were saved and the classifiers were retrained. This semi-automated training continued until 
convergence (i.e., until the researcher determined that the automated system was performing well). After 
training all locations, at least one additional round was necessary to ensure that new image samples did not 
negatively affect performance. We found that the initial training images plus two rounds of semi-automated 
training were sufficient for most users, which took roughly 15-20 minutes and resulted in an average of 13 
training examples per location (SD=4.5; range=5-24). 

Procedure. The study procedure lasted up to two hours, and consisted of: (i) an interview about mobile and 
wearable device usage including thoughts about on-body interaction (~20 minutes); (ii) system calibration and 
training (~30 minutes); (iii) using TouchCam with three interaction techniques (~10 minutes each); and (iv) a 
post-study questionnaire (~15 minutes). For (iii), the VoiceOver-like interaction techniques were presented in a 
fully counterbalanced order. Each interaction technique supported the same set of applications and menu items 
accessed through a two-level hierarchical menu. The top-level menu had five applications (Clock, Daily 
Summary, Notifications, Health and Activities, and Voice Input), which were selected by double tapping. Once 
selected, each application had 3-4 submenu items except for Voice Input, which had no submenu. The three 
interaction techniques are described below (see also: Figure 8 and the supplementary video):  

1. Location-independent gestures (LI). Users swiped left or right anywhere to select an application. 
2. Location-specific palm gestures (LSpalm). Top-level applications were mapped to five different locations 

on the palm. Users pointed directly to a location to select that application or searched for an item by 
sliding their finger between locations (similar to VoiceOver). 

3. Location-specific body gestures (LSbody). Functioned similarly to LSpalm but mapped the applications to five 
different locations on the body rather than just the palm. We attempted to use intuitive mappings. For 
example, tapping the outer wrist for Clock and the ear for Voice Input. The other mappings were: the 
palm for Notifications, the inner wrist for Daily Summary, and the thigh for Health and Activities. 

After activating an application, navigation of the submenus was identical across all three interaction 
techniques, using swipes left and right to select an item and a double-tap to activate it. For each of these 
interaction techniques, participants were instructed to complete the same set of 10 tasks in a random order. 
After an automated voice prompt said “begin,” a task consisted of selecting an application, opening its submenu, 
and then selecting and activating a specific menu item (e.g., “open the Alarm item under the Clock menu”). After 

(a) Location-independent gestures (LI) (b) Location-specific palm gestures (LSpalm) (c)Location-specific body gestures (LSbody) 

Fig. 8. Three on-body interaction techniques: (a) for LI, users swipe left/right anywhere on the body to select an application. 
For (b) and (c), users select an application by double tapping on a specific location on their palm (LSpalm) or body (LSbody). 
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the correct menu item had been activated by double-tapping, an automated voice prompt said “task complete” 
and participants proceeded to the next task. 

The session concluded with open-ended questions about the participant’s experience using TouchCam 
Realtime and the three interaction techniques. 

Data and Analysis. Throughout the study, we logged all sensor readings, the location and gesture 
classifications, and event occurrences (e.g., task start/end, menu navigation). We analyze performance in terms 
of classification accuracy, as well as qualitative metrics of robustness and usability for the three on-body 
interaction techniques that we tested. We also describe qualitative reactions and subjective preferences based 
on the interviews and questionnaires. 

5.2  Study II: Experiments and Results 

To evaluate TouchCam’s realtime performance and usability with our blind and low-vision users, we observed 
participants’ behavior during the study and analyzed subjective feedback about our system. We also conducted 
offline experiments as with Study I, focusing on the sensor data gathered during the training phase of the study 
(rather than later data, which was unlabeled). Below, we summarize the details of our experiments and findings. 

General Observations and Reactions. All twelve participants successfully used TouchCam Realtime to 
complete tasks with each of the three interaction techniques. In the pre-study interview, most participants (N=9) 
reacted positively toward the idea of on-body interaction citing quick and easy access (N=7), the ability to map 
specific tasks to different body locations (N=6), reducing the number of devices to be carried (N=6), and not 
needing to hold a phone in hand, thus avoiding the risk of theft or damage and potentially freeing that hand for 
other tasks (N=4). 

Participants reacted similarly after using the TouchCam prototype. Preferences were split between the three 
interaction techniques. Participants appreciated the low learning curve and flexible input location of the LI 
interface, which supported simple swipe and tap gestures anywhere on the body, while the location-specific 
LSpalm and LSbody interfaces offered quicker and more direct selections once the location mappings were learned. 
Some participants preferred the proximity of locations for LSpalm because it enabled easy exploration and 
minimal movement, while others liked the more intuitive location mappings of LSbody. Key concerns included 
TouchCam’s large physical size, the occasional difficulty with the LSpalm interface due to its lower fine-grained 
accuracy, and the social acceptability of using LSbody in public (e.g., touching an ear may draw unwanted 
attention to the device). See [46] for a more thorough examination of qualitative reactions to our system. 

Localization Accuracy. To assess TouchCam’s localization accuracy and robustness for visually impaired 
users, we analyzed the data gathered during the training phase of the study. We first conducted a leave-one-out 
cross-validation experiment using the recorded training samples for each participant (similar to Study I). This 
resulted in an average accuracy of 91.2% (SD=3.5%) at the coarse-grained level and 76.3% (SD=76.3%) at the fine-
grained level, which is a drop in performance compared to Section 4.3. This decrease, however, is reflective of 
our adaptive training procedure: since new samples are added only when misclassified using the current SVM, 
we would naturally expect lower performance when removing even a single sample for cross-validation. 

Thus, we conducted an additional experiment using the full training set and classified other video frames 
from the training session (i.e., those recorded in between the stored training samples). Here, the accuracy 
increases to 94.2% (SD=5.0%) and 81.3% (SD=6.6%) respectively. These latter numbers better reflect actual usage 
performance since we could not reliably measure ground truth during the actual user study (i.e., when 
participants were using TouchCam with the three interaction techniques). We note that though performance 
should be improved in future work (see Discussion),  these results were sufficient for using and evaluating 
TouchCam with our participants.  
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Out of Focus Poor Contrast Too Dark Oversaturated Fingernail in View Off Target 

Fig.  9. Some images captured during Study II  were of poor quality due to the highlighted reasons. Despite these issues 
performance remained adequate for participants to complete our specified tasks. 

Robustness. To investigate this drop in performance in more detail, we performed a manual inspection of 
the 1,380 training images across the 12 participants using a custom image reviewing tool. While the severity of 
the problems varied widely, 22.2% of the images had some issue that could interfere with reliable classification 
(Figure 9), including: poor focus (13.6%), insufficient illumination (5.4%), poor contrast (4.3%), or oversaturation 
(0.8%). In addition, 3.2% of the images did not capture the target location due to the offset between the 
participant’s touch location and the center of the camera’s field of view, and in 0.6% of the images the 
participant’s finger filled a large portion of the field of view, reducing the number of pixels available for 
identifying the target location. We further discuss robustness in the Discussion. 

5.3  Summary of Study II Findings 

Our findings validate TouchCam Realtime’s performance with our target population and demonstrate three 
possible on-body interaction techniques that our approach can support. Participants successfully performed 
several simple input tasks with our system, and their comments highlight positive reactions to on-body input 
as well as tradeoffs between the three interaction techniques. These tradeoffs reflect both TouchCam’s 
performance (e.g., LSpalm was least accurate due to its reliance on fine-grained localization) and broader design 
implications (e.g., user preferences for flexibility of input location, learning curve, and social acceptability). Our 
findings also highlight obstacles to robust on-body input recognition, especially for visually impaired users who 
cannot rely on visual cues. 

6 DISCUSSION 

While prior work has explored preliminary issues related to the design of on-body interfaces for visually 
impaired users [18,44], TouchCam is the first wearable on-body input system supporting real-time interaction 
designed for and evaluated with this population. Moreover, our work contributes the first real-time system for 
localizing skin images, and the first to explore location-specific touch-based gestures at a wide set of body 
locations. Below we discuss TouchCam’s performance and usability and provide recommendations for future 
on-body input systems to support users with visual impairments. 

6.1  Robust On-Body Input Detection Using Sensors On the Gesturing Finger and Wrist 

Because TouchCam’s sensors move with the gesturing finger, they can support touch input at a variety of body 
(and non-body) locations without requiring additional instrumentation. This feature allows greater input 
flexibility than most other on-body input approaches (e.g., compared to ViBand [28] or Touché [48]) and means 
that the user is also less likely to encounter issues with camera framing or occlusion—problems that are common 
for VI users when they use camera-based systems [1]. Although we did not examine non-body interactions in 
our work, TouchCam should support location-specific gestures at any surface with visually distinctive features. 

Our results demonstrate the feasibility of a computer-vision driven finger camera approach for on-body 
input; however, we also encountered obstacles that limit TouchCam’s accuracy and precision. Because of the 
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camera’s size and positioning, image quality was variable. A high percentage (22.2%) of the training images 
gathered during Study II were out of focus, low contrast, or poorly illuminated, and in some images the target 
location was not visible due to the offset between the participant’s touch location and the center of the camera’s 
field of view. These usage issues appeared to have a greater impact on performance than other potential factors 
such as ambient lighting, skin tone, age, or hand size, although future work should investigate these possibilities 
in greater detail. Improved camera hardware could help address some problems—for example, autofocus 
functionality would help ensure sharp focus across changes in camera distance or perspective and a wider-angle 
lens would provide additional contextual information to aid classification. Audio feedback that notifies users 
when there is a problem and helps them learn how to use the system, as provided by assistive devices for reading 
such as KNFB Reader10 or OrCam11, could also be helpful. Finally, future work should explore hybrid sensing 
approaches that combine a finger-mounted camera with an additional body-worn sensor on the head or chest, 
which could provide additional contextual information and assist with localization. 

6.2  An Expanded On-Body Input Vocabulary 

As mentioned above, our work introduces new types of on-body interactions that other systems cannot readily 
support without additional instrumentation. For example, the fixed sensors used by ViBand’s smartwatch 
platform limit interactions to a relatively small area on the hand and arm [28] while Touché requires 
modification of the target interaction surface and cannot detect gestural input [48]. In contrast, TouchCam can 
recognize location-specific gestures at several body locations, potentially allowing for intuitive context-specific 
input (e.g., tapping the wrist to check the time) and supporting a high degree of flexibility and customization. 

Participants identified tradeoffs between our three proof-of-concept interface designs, which should be 
considered when designing on-body interfaces to strike a balance between speed, accuracy, and learnability. 
Location-independent gestures (LI), which allow navigation using swipe gestures anywhere on the body, are 
easy to understand and learn, do not require individual calibration, and enable flexible input as needed for 
different situations (e.g., sitting at home vs. walking while holding a cane). Location-specific gestures (LSpalm 

and LSbody), where the user can directly select an application or menu item by touching a specific location, are 
potentially quicker once the location mappings have been learned and can also support intuitive context-specific 
gestures as mentioned above. The palm-only version (LSpalm), with its high touch sensitivity and close proximity 
between mapped locations, could enable faster and more discrete input. Compared with the other two versions, 
it also more readily supports “touch and explore” functionality that could help participants learn the location 
mappings more quickly. However, in our experiments LSpalm was less accurate than the other two because of 
inter-class similarity between palm locations and thus required participants to more carefully position their 
hand and fingers. 

This expanded input vocabulary and flexibility of input locations may come at a cost, at least in the current 
iteration of TouchCam. While our prior work [53] suggested that  we should be able to support precise  
localization on the palm and fingers using their rich visual features, our findings in this work highlight difficulty 
with robustly recognizing fine-grained locations. Future work should investigate ways to more reliably 
recognize fine locations, ideally with greater granularity than tested in our studies (e.g., more than five palm 
locations), and recognizing touch input at two or more locations simultaneously (e.g., using multiple finger-
worn sensors) to support multi-touch gestures. In particular, future work should investigate how to extend our 
approach to support precise 2D localization (e.g., as with OmniTouch [21] or CyclopsRing [4]). These goals may 
be possible with the aid of additional sensors (e.g., a body-mounted camera) or with more efficient fingerprint 
and palmprint recognition algorithms that can support real-time interactions. 

10 http://www.knfbreader.com/ 
11 http://www.orcam.com/ 
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6.3 Training and Calibration 

While TouchCam’s gesture recognition algorithms are robust enough to allow for a shared classifier that works 
across users, its localization algorithms rely on unique skin and clothing features and must be individually 
calibrated for each user. This requirement raises two concerns: (i) the time needed to complete the individual 
training procedure, and (ii) the stability and robustness of the classifiers over time as the system shifts position 
and the user’s body appearance varies (e.g., due  to changing moisture levels or clothing). We took steps  to  
address the first concern in Study II by introducing our automated training procedure, which took about 15-20 
minutes for a new user compared to 30-45 minutes in Study I. However, this procedure will likely need to be 
simplified and further streamlined in future versions. One possibility would be to bootstrap the system using a 
large amount training data across multiple users, which could enable coarse-grained classification without 
individual training. Fine-grained accuracy could be improved over time by learning as the system is used. 

As for the second concern, it is possible (even likely) that shifts in the sensor positions after calibration 
negatively impacted performance for some participants during Study II. Long-term performance is a challenge 
for many on-body input systems, since they can be highly sensitive to sensor positioning and biometric changes 
[63]. To explore how accuracy is affected over time, we conducted a small additional study with data gathered 
across five identical sessions with a single user (the first author). The time between sessions varied from 15 
minutes to 24 hours, with the sessions completed over a three-day period. The prototype was fully removed 
between each session. Classification accuracy was measured similarly to the other experiments described above, 
except previous session data was used for training and the 
current session for testing. 

As expected, accuracy drops considerably when training 
on a single session and testing on another, from the 94.2% 
coarse-grained and 81.3% fine-grained numbers reported in 
Study II down to 88.2% and 73.6% on average respectively. 
However, combining training data across sessions 
improves accuracy reaching  an average of 96.5% and  91.8%  
at the two levels for four training sessions (Figure 10). A  
larger longitudinal study will be necessary to determine  
how well these results extend to other users and to a longer  
period of time, but these results are promising.  

6.4  Physical Design 

We designed TouchCam to avoid interfering with the user's movements and sense of touch, but the system is 
still large and requires tethering to a desktop computer for fast processing. With further algorithmic 
optimizations and increases in mobile processing power, we ultimately envision a smaller, self-contained system 
that uses a smartwatch for processing and power. Furthermore, our priority with the finger-worn components 
was to ensure robustness and durability during our experiments, but our design can be streamlined considerably 
using existing technology. For example, the 6mm diameter camera module12 that we selected could be replaced 
with a much smaller 1mm unit from the same manufacturer13, and the IMU components could be embedded 
more directly into the ring (while the board we used is 16mm in diameter, the IMU itself is only 4mm square). 
The IR reflectance sensors positioned near the tip of the user's finger could potentially be replaced with an 
alternative touch detection method that is less intrusive—for example, an IR depth sensor with a longer range. 
Further work is needed to explore how these design changes impact accuracy, robustness, and user perceptions. 

12 Awaiba NanEye GS Idule Demo Kit 
13 Awaiba NanEye 2D Sensor 
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6.5 Limitations 

Our system design and studies had several limitations. The TouchCam camera needed to be manually focused 
and its relatively narrow field of view resulted in an offset between what the user was touching and what was 
sensed—the latter was particularly problematic for small locations (e.g., finger tips). Future work should explore 
auto-focusing camera hardware with wide angle lens. The data collected during Studies I and II was collected 
under controlled conditions. Moreover, while the visually impaired participants in Study II were able to use 
TouchCam to complete all of the specified tasks, they occasionally needed multiple attempts to do so. Future 
work should explore more realistic and longitudinal usage. 

7 Conclusion 

We introduced and investigated TouchCam, a finger-worn, multi-sensor system that supports input at a variety 
of body locations while mitigating camera framing issues that blind users often experience. Our design also 
enables new types of contextual gestures based on location. We evaluated two iterations of the TouchCam 
system in terms of accuracy and robustness, as well as usability for our target group of visually impaired users. 
Our findings not only highlight the feasibility of our approach—greater than 95% accuracy at detecting 24 
location-specific gestures, and support for realtime interaction at approximately 35 frames per second—but also 
characterize tradeoffs in robustness and usability between different types of on-body input. Fine-grained input 
on the palm and fingers is desirable for efficient and discrete input, but these locations are more challenging to 
classify reliably due to their small size and similar visual features; in contrast, disparate body locations are easier 
to recognize and may enable more intuitive mappings between location and application, but may also be less 
efficient for a new user and potentially socially unacceptable. Location-specific gestures have the potential to 
support efficient interaction for expert users, flexible input locations depending on user preference or situation 
(e.g., while walking with a cane vs. sitting at home), task-based interactions tied to intuitive locations, and 
relatively fine-grained input for body areas that have distinctive visual features (e.g., fingertips and palm). In 
future work, we plan to explore ways to improve robustness and evaluate our system’s long-term performance 
during a longitudinal study. 
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Appendix 

Localization Features Motion Features 

IR 2 raw IR sensor readings IR 70 features: 50 resampled points + 5 summary statistics × 4 windows 

639 features: 3 sensors × [3 axes × (50 resampled points + 5 summary 
IMUs 4D orientation vector (quaternion) for each IMU IMUs 

statistics × 4 windows) + 3 correlation values] 

LBP texture histogram with 1792 bins (14 patterns x 16 variances x 8 scales) 140 features: 2 axes × (50 resampled points + 5 summary statistics × 4 
Camera Camera 2D Gabor keypoints, variable number per image windows) 

Table 4. Summary of localization and motion features extracted from each sensor for TouchCam Offline (Study I). 
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Single Sensors 

IR vs. W 

t23 

-17.90 

p 
<0.001 

d 
-3.65 

Two Sensors 

IR+C vs. F+W 

t23 

-8.85 

p 
<0.001 

d 
-1.81 

Best Single (W) 
vs. Two Sensors 

t23 p d 

IR vs. F -17.16 <0.001 -3.50 IR+C vs. W+C -7.46 <0.001 -1.52 W vs. IR+C 5.73 <0.001 1.17 
IR vs. C -10.38 <0.001 -2.12 IR+W vs. IR+C 7.39 <0.001 1.51 W vs. W+C -4.81 <0.001 -0.98 
W vs. C 4.34 <0.001 0.89 IR+F vs. IR+C 6.72 <0.001 1.37 W vs. IR+W -4.81 <0.001 -0.98 
F vs. C 3.63 0.005 0.74 IR+C vs. F+C -6.59 <0.001 -1.35 W vs. F+W -4.75 <0.001 -0.97 

F+W vs. F+C 6.20 <0.001 1.27 
IR+F vs. F+W -4.67 <0.001 -0.95 

Three Sensors t23 p d 
F+W vs. W+C 
IR+W vs. F+W 

3.73 
-3.23 

0.008 
0.036 

0.76 
-0.66 

Best Two (F+W) 
vs. Three Sensors 

t23 p d 

IR+F+W vs. IR+F+C 6.46 <0.001 1.32 F+W vs. IR+F+C 4.17 <0.001 0.85 
IR+F+C vs. F+W+C 
IR+F+W vs. IR+W+C 

-4.71 
3.64 

<0.001 
0.003 

-0.96 
0.74 

Best Three (IR+F+W) 
vs. All Four Sensors 

t23 p d F+W vs. IR+F+W 
F+W vs. F+W+C 

-2.99 
-2.67 

0.020 
0.027 

-0.61 
-0.55 

IR+F+W vs. F+W+C -3.17 0.016 -0.65 IR+F+W vs. All -2.13 0.044 -0.44 F+W vs. IR+W+C -2.67 0.026 0.49 

Table 5. Statistically significant comparisons between sensors used in Study I. 
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