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ABSTRACT 

Building on recent prior work that combines Google Street 

View (GSV) and crowdsourcing to remotely collect 

information on physical world accessibility, we present the 

first “smart” system, Tohme, that combines machine 

learning, computer vision (CV), and custom crowd 

interfaces to find curb ramps remotely in GSV scenes. 

Tohme consists of two workflows, a human labeling 

pipeline and a CV pipeline with human verification, which 

are scheduled dynamically based on predicted performance. 

Using 1,086 GSV scenes (street intersections) from four 

North American cities and data from 403 crowd workers, 

we show that Tohme performs similarly in detecting curb 

ramps compared to a manual labeling approach alone (F-

measure: 84% vs. 86% baseline) but at a 13% reduction in 

time cost. Our work contributes the first CV-based curb 

ramp detection system, a custom machine-learning based 

workflow controller, a validation of GSV as a viable curb 

ramp data source, and a detailed examination of why curb 

ramp detection is a hard problem along with steps forward. 

Author Keywords 

Crowdsourcing accessibility, computer vision, Google 

Street View, Amazon Mechanical Turk 

INTRODUCTION 

Recent work has examined how to leverage massive online 

map datasets such as Google Street View (GSV) along with 

crowdsourcing to collect information about the accessibility 

of the built environment [22–26]. Early results have been 

promising; for example, using a manually curated set of 

static GSV images, Hara et al. [24] found that minimally 

trained crowd workers in Amazon Mechanical Turk 

(turkers) could find four types of street-level accessibility 

problems with 81% accuracy. However, the sole reliance on 

human labor limits scalability. 

In this paper, we present Tohme
1
, a scalable system for 

remotely collecting geo-located curb ramp data using a 

combination of crowdsourcing, Computer Vision (CV), 

machine learning, and online map data. Tohme lowers the 

overall human time cost of finding accessibility problems in 

GSV while maintaining result quality (Figure 1). As the 

first work in this area, we limit ourselves to sidewalk curb 

ramps (sometimes called “curb cuts”), which we selected 

because of their visual salience, geospatial properties (e.g., 

often located on corners), and significance to accessibility. 

                                                           
1 Tohme is a Japanese word that roughly translates to “remote eye.” 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 

or republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from Permissions@acm.org.  

UIST '14, October 05 - 08 2014, Honolulu, HI, USA 

Copyright 2014 ACM 978-1-4503-3069-5/14/10$15.00. 

http://dx.doi.org/10.1145/2642918.2647403  

 

 

 

 
Figure 1: In this paper, we present Tohme, a scalable system for semi-automatically finding curb ramps in Google Streetview (GSV) panoramic 

imagery using computer vision, machine learning, and crowdsourcing. The images above show an actual result from our evaluation. 

 

(a) Raw Google Street View (GSV) image 

(b) Results of computer vision curb ramp 
detection (lighter red is higher confidence) 

(c) Results after crowdsourced verification 
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For example, in a precedent-setting US court case in 1993, 

the court ruled that the “lack of curb cuts is a primary 

obstacle to the smooth integration of those with disabilities 

into the commerce of daily life” and that “without curb cuts, 

people with ambulatory disabilities simply cannot navigate 

the city” [2]. 

While some cities maintain a public database of curb ramp 

information (e.g., [1, 12]), this data can be outdated, 

erroneous, and expensive to collect. Moreover, it is not 

integrated into modern mapping tools. In a recent report, 

the National Council on Disability noted that they could not 

find comprehensive information on the “degree to which 

sidewalks are accessible” across the US [38]. In addition, 

the quality of data available in government systems is 

contingent on the specific policies and technical 

infrastructure of that particular local administration (e.g., at 

the city and/or county level). While federal US legislation 

passed in 1990 mandates the use of ADA-compliant curb 

ramps in all new road construction and renovation [45], this 

is not the case across the globe. Our overarching goal is to 

design a scalable system that can remotely collect 

accessibility information for any city across the world that 

has streetscape imagery, which is now broadly available in 

GSV, Microsoft Bing Maps, and Nokia City Scene. 

Tohme is comprised of four custom parts: (i) a web scraper 

for downloading street intersection data; (ii) two crowd 

worker interfaces for finding, labeling, and verifying the 

presence of curb ramps; (iii) state-of-the-art CV algorithms 

for automatic curb ramp detection; and (iv) a machine 

learning-based workflow controller, which predicts CV 

performance and dynamically allocates work to either a 

human labeling pipeline or a CV + human verification 

pipeline. While Tohme is purely a data collection system, 

we envision future work that integrates Tohme’s output into 

accessibility-aware map tools (e.g., a heatmap visualization 

of a city’s accessibility or a smart navigation system that 

recommends accessible routes).  

To evaluate Tohme, we conducted two studies using data 

we collected from 1,086 intersections across four North 

American cities. First, to validate the use of GSV imagery 

as a reliable source of curb ramp knowledge, we conducted 

physical audits in two of these cities and compared our 

results to GSV-based audit data. As with previous work 

exploring the concordance between GSV and the physical 

world [4, 9, 22, 26, 41], we found high correspondence 

between the virtual and physical audit data. Second, we 

evaluated Tohme’s performance in detecting curb ramps 

across our entire dataset with 403 turkers. Alone, the 

computer vision sub-system currently finds 67% of the curb 

ramps in the GSV scenes. However, by dynamically 

allocating work to the CV module or to the slower but more 

accurate human workers, Tohme performs similarly in 

detecting curb ramps compared to a manual labeling 

approach alone (F-measure: 84% vs. 86% baseline) but at a 

13% reduction in human time cost.  

In summary, the primary contribution of this paper is the 

design and evaluation of the Tohme system as a whole, 

with secondary contributions being: (i) the first design and 

evaluation of a computer vision system for automatically 

detecting curb ramps in images; (ii) the design and study of 

a “smart” workflow controller that dynamically allocates 

work based on predicted scene complexity from GIS data 

and CV output; (iii) a comparative physical vs. virtual curb 

ramp audit study (Study 1), which establishes that GSV is a 

viable data source for collecting curb ramp data; and (iv) a 

detailed examination of why curb ramp detection is a hard 

problem and opportunities for future work in this domain.  

RELATED WORK 

We describe work in sidewalk assessment, crowdsourcing, 

computer vision, and dynamic workflow allocation. 

Sidewalk Assessment 

Traditionally, sidewalk assessment has been conducted via 

in-person street audits [42, 47] which are labor intensive 

and costly [41], or via citizen call-in reports, which are 

done on a reactive basis. Recent mobile apps such as 

seeclickfix.com or NYC311 allow citizens to report street 

infrastructure problems including damaged or missing curb 

ramps. However, these systems require in situ observation 

and thus do not scale as well as remote, virtual inquiry.  

Crowdsourcing 

Recently, Bigham et al. argued that current technological 

infrastructure provides unprecedented access to large 

sources of human power that can be harnessed to address 

accessibility challenges [6] (e.g., via crowdsourcing). 

Examples include VizWiz [5] and Legion:Scribe [35]. Most 

relevant to this paper is the recent exploration of combining 

GSV and crowdsourcing for collecting street-level 

accessibility data including sidewalks [24], bus stops [26], 

and intersections [22]. Though this prior work demonstrates 

GSV as a potential accessibility data source, the studies do 

not examine semi-automatic methods (e.g., using machine 

learning or CV) as we do here. 

Tohme’s performance is contingent on crowd workers’ 

speed and accuracy in processing GSV imagery. Prior work 

exists in studying how to efficiently collect image labels 

(e.g., [14, 43]). Su et al. investigated cost-performance 

tradeoff between majority vote based labeling and 

verification based data collection [43], finding quality 

control via verification improves cost-effectiveness. Recent 

work by Deng [14] explores methods of efficiently 

collecting multiclass image annotations by incorporating 

heuristics such as correlation, hierarchy, and sparsity (e.g., 

the presence of a keyboard in an image also suggests the 

presence of correlated objects such as mouse and monitor); 

however, to our knowledge, no prior work exists on 

efficiently collecting image labels from crowd workers on 

large panoramic imagery.  

Computer Vision 

There is a growing body of research applying CV 

techniques to GSV [49–53]. For example, Xiao et al. 



introduced automatic approaches to model 3D structures of 

streetscape and building façades using GSV [49, 50]. Zamir 

et al. showed that large-scale image localization, tracking, 

and commercial entity identification are possible [51–53]. 

This work demonstrates the potential of combining CV with 

GSV; however, automatically detecting curb ramps or other 

accessibility features has not been studied.  

Tohme builds on top of existing object detection algorithms 

from the CV community [11, 17, 46]. For example, we use 

Deformable Part Models (DPMs) [17, 18], one of the top-

performing approaches in the PASCAL Visual Object 

Classes (VOC) challenge, a major object detection and 

recognition competition [17]. Despite a decade-long effort, 

however, object detection remains an open problem [7, 48]. 

For example, even the DPM, which won the “Lifetime 

Achievement” Prize at the aforementioned PASCAL VOC 

challenge, has reached 30% precision and 70% recall in 

‘car’ detection [17]. Due to their variation in size, shape, 

and appearance, curb ramps are similarly difficult to detect. 

Consequently, we incorporate a “smart” workflow 

algorithm that attempts to predict poor CV performance 

and, in those instances, route work to human labelers. 

Dynamic Workflow Allocation 

Tohme uses machine learning to control its workflow for 

efficiently collecting data from GSV. Typical workflow 

adaptions include: varying the number of workers to recruit 

for a task [31, 48], assigning stronger workers to harder 

versions of a task [10], and/or fundamentally changing the 

task an individual worker is given [30, 36] These workflow 

decisions are made automatically by workflow controllers 

often by analyzing worker performance history, inferring 

task difficulty, or estimating cost.   

Most relevant to our work is workflow adaptation research 

in crowdsourcing systems [31, 36, 48]. For example, Lin et 

al. and Welinder et al. rely on worker performance histories 

to either assign different tasks [36] or recruit different 

numbers of workers [48]. More similar to our work is [30, 

31] who infer task difficulty via automated methods and 

adapt work accordingly. For example, Kamar et al. [31] 

analyzed image features with CV algorithms to predict 

worker behaviors a priori on image annotation tasks and 

used this to dynamically decide the number of workers to 

recruit. 

Though similar, our work is different both in problem 

domain (finding curb ramps) as well as in approach. Rather 

than vary the number of workers per task, our workflow 

controller infers CV performance and decides whether to 

use crowd worker labor for verifications or labeling. In 

addition, we do not simply rely on image features or CV 

output to determine workflow but also contextual 

information such as intersection complexity and 3D-point 

cloud data.  

DATASET 

Because sidewalk infrastructure can vary in quality, design, 

and appearance across geographic areas, our study sites 

include a range of neighborhoods from four North 

American cities: Washington DC, Baltimore, Los Angeles, 

and Saskatoon, Saskatchewan (Figure 2; Table 1). For each 

city, we collected data from dense urban cores (shown in 

blue) and semi-urban residential areas (shown in red). We 

 
Figure 2: The eight urban (blue) and residential (red) audit areas used in our studies from Washington DC, Baltimore, LA, and Saskatoon. This 

includes 1,086 intersections across a total area of 11.3km2. Among these areas, we physically surveyed 273 intersections (see annotations in a-d). 

 WASHINGTON DC BALTIMORE LOS ANGELES SASKATOON OVERALL 
Region Type Downtown Residential Downtown Residential Downtown Residential Downtown Residential  

Total Area (km2) 1.52 1.13  0.73  2.24  1.91 1.89 0.74  1.13 11.28 

# of Intersections 140 124 132 139 132 132 141 146 1,086 

# of Curb Ramps* 818 352 476 229 358 186 321 137 2877 

# of Missing Curb Ramps* 8 35 32 69 43 214 24 222 647 

Avg. GSV Data Age (SD) 1.9 yrs (0.77) 1.6 yrs (0.63) 2.1 yrs (0.75) 0.4 yrs (0.65) 2.0 yrs (0.31) 0.9 yrs (0.24) 4.0 yrs (0.0) 4.0 yrs (0.0) 2.2 (1.3) 

Table 1: A breakdown of our eight audit areas. Age calculated from summer 2013. *These counts are based on ground truth data. 

 



emphasized neighborhoods with potential high demand for 

sidewalk accessibility (e.g., areas with schools, shopping 

centers, libraries, and medical clinics). 

We used two data collection approaches: (i) an automated 

web scraper tool that we developed called svCrawl, which 

downloads GIS-based intersection data, including GSV 

images, within a geographically defined region; and (ii) a 

physical survey of a subset of our study sites (four 

neighborhoods totaling 273 intersections), which was used 

to validate curb ramp infrastructure found in the GSV 

images. In all, we used svCrawl to download data from 

1,086 intersections across 11.3km
2
 (Table 1).  

To create a ground truth dataset, two members of our 

research team independently labeled all 1,086 scenes using 

our custom labeling tool (svLabel). Label disagreements 

were resolved by consensus. From the ground truth data, we 

discovered 2,877 curb ramps and 647 missing curb ramps 

(Figure 3). Of the 1,086 scenes, 218 GSV scenes did not 

require marking a curb ramp or missing curb ramp because 

the location was not a traditional intersection (e.g., an 

alleyway with no vertical drop from the sidewalk). These 

218 scenes are useful for exploring false positive labeling 

behavior and were kept in our dataset. The remaining 868 

intersections had on average 3.3 curb ramps (SD=2.3) and 

0.75 missing curb ramps (SD=1.3) per intersection. A total 

of 603/868 intersections were marked as not missing any 

curb ramps. We use the ground truth labels for training and 

testing our machine learning and CV algorithms and to 

evaluate crowd worker performance.  

At download time (summer 2013), the average age of the 

GSV images was 2.2 years (SD=1.3). As image age is one 

potential limitation in our approach, it is necessary to first 

show that GSV is a reasonable data source for deriving curb 

ramp information, which we do next. 

STUDY 1: ASSESSING GSV AS A DATA SOURCE 

To establish GSV as a viable curb ramp data source, we 

must show: (i) that it presents unoccluded views of curb 

ramps, (ii) that the curb ramps can be reliably found by 

humans and, potentially, machines, and (iii) that the curb 

ramps found in GSV adequately reflect the state of the 

physical world. This study addresses each of these points. 

Multiple studies have previously demonstrated high 

concordance between GSV-based audits and audits 

conducted in the physical world [4, 9, 22, 26]; however, 

prior work has not examined curb ramps specifically. 

Though this audit study was labor intensive, it is important 

to establish GSV as a reliable data source for curb ramp 

information, as it is the crux of our system’s approach.  

We conducted physical audits in the summer of 2013 across 

a subset of our GSV dataset: 273 intersections spanning 

urban and residential areas in Washington DC and 

Baltimore (Figure 1). We followed a physical audit process 

similar to Hara et al. [26]. Research team members 

physically visited each intersection, capturing geo-

timestamped pictures (Mean=15 per intersection; SD=5). 

These images were analyzed post hoc for the actual audit. 

Surveying the 273 intersections took approximately 25 

hours as calculated by image capture timestamps. 

Auditing Methodology.  

For the auditing process itself, two additional research 

assistants (different from the above) independently counted 

the number of curb ramps and missing curb ramps at each 

intersection in both the physical and GSV image datasets. 

An initial visual codebook was composed based on US 

government standards for sidewalk accessibility [32, 45]. 

Following the iterative coding method prescribed by 

Hruschka et al. [29], a small subset of the data was 

individually coded first (five intersections from each area). 

The coders then met, compared their count data, and 

updated the codebook appropriately to help reduce 

ambiguity in edge cases. Both datasets were then coded in 

entirety (including the original subset, which was recoded). 

This process was iterated until high agreement was reached.  

Calculating Inter-Rater Reliability between Auditors 

Before comparing the physical audit data to the GSV audit 

data, which is the primary goal of Study 1, we first 

calculated inter-rater reliability between the two coders for 

each dataset. We applied the Krippendorff’s Alpha (α) 

statistical measure, which is used for calculating inter-rater 

reliability of count data (see [34]). Results after each of the 

three coding passes using the iterative scheme from [29] are 

shown in Table 2. Agreement was consistently high, with 

the 3
rd

 pass representing the reliability of codes in the final 

code set. There was initially greater inconsistency in coding 

missing curb ramps vs. coding existing curb ramps, perhaps 

because identifying a missing ramp requires a deeper under-

standing of the intersection and proper ramp placement. 

    

    

    
Figure 3: Example curb ramps (top two rows) and missing curb 

ramps (bottom row) from our GSV dataset. 
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 PHYSICAL AUDIT IMAGE DATASET GSV AUDIT IMAGE DATASET 
 1st Pass (α) 2nd Pass (α) 3rd Pass (α) 1st Pass (α) 2nd Pass (α) 3rd Pass (α) 

Curb Ramp 0.959 0.960 0.989 0.927 0.928 0.989 

Missing C. Ramp 0.647 0.802 0.999 0.631 0.788 0.999 

Overall 0.897 0.931 0.996 0.883 0.917 0.996 

Table 2: Krippendorff’s alpha inter-rater agreement scores between 

two researchers on both the physical audit and GSV audit image 

datasets. Following Hruschka et al.’s iterative coding methodology, a 

3rd audit pass was conducted with an updated codebook to achieve 

high-agreement scores—in our case, α > 0.996. 

 



Comparing Physical vs. GSV Audit Data 

With high agreement verified within each dataset, we can 

now compare the count scores between the datasets. Similar 

to [26, 41], we calculate a Spearman rank correlation 

between the two count sets (physical and GSV). This was 

done for both the curb ramp and missing curb ramp counts. 

To enable this calculation, however, we first merged the 

two auditor’s counts by taking the average of their counts 

for missing curb ramps and the average for present curb 

ramps at each intersection. Using these average counts, a 

Spearman rank correlation was computed, which shows 

high correspondence between datasets: ρ=0.996 for curb 

ramps and ρ=0.977 for missing curb ramps (p < 0.001). 

Overall, 1,008 curb ramps were identified in the virtual 

audit compared to 1,002 with the physical audit; differences 

were due to construction. The number of missing curb 

ramps was exactly the same for both datasets (89).  

Study 1 Summary 

Though the age of images in GSV remains a concern, Study 

1 demonstrates that there is remarkably high concordance 

between curb ramp infrastructure in GSV and the physical 

world, even though the average image age of our dataset 

was 2.2 years. With GSV established as a curb ramp dataset 

source, we now move on to describing Tohme. 

A SCALABLE SYSTEM FOR CURB RAMP DETECTION 

Tohme is a custom-designed tool for remotely collecting 

geo-located curb ramp information using a combination of 

crowdsourcing, CV, machine learning, and online map data. 

It is comprised of four parts depicted in Figure 4: (i) a web 

scraper, Street View Crawl (svCrawl), for downloading 

street intersection data; (ii) two crowd worker interfaces for 

finding, labeling, and verifying the presence of curb ramps 

called svLabel and svVerify; (iii) state-of-the-art CV 

algorithms for automatically detecting curb ramps 

(svDetect); and (iv) a machine learning-based workflow, 

called svControl, which predicts CV performance on a 

scenes and allocates work accordingly. 

We designed Tohme iteratively with small, informal pilot 

studies in our laboratory to test early interface ideas. We 

also performed larger experiments on Amazon Mechanical 

Turk (MTurk) with a subset of our data to understand how 

different interfaces affected crowd performance and, more 

generally, how well crowds could perform our tasks. The 

CV sub-system, svDetect, also evolved across multiple 

iterations, and was trained and evaluated using the 

aforementioned ground truth labels. While our ultimate goal 

is to deploy Tohme publicly on the web, the current 

prototype and experiments were deployed on MTurk. 

Below, we describe each Tohme sub-system. 

svCrawl: Automatic Intersection Scraping 

svCrawl is a custom web scraper tool written in Python that 

downloads GIS-related intersection data over a predefined 

geographic region (Figure 2). It uses the Google Maps API 

(GMaps API) to enumerate and extract street intersection 

points within selected boundaries. For each intersection, 

svCrawl  downloads four types of data:  

1. A GSV panoramic image at its source resolution (13,312 x 
6,656px). This is our primary data element (e.g., Figure 1).  

2. A 3D-point cloud, which is captured by the GSV car using 

LiDAR [3]. The depth data overlays the GSV panorama but 

at a coarser resolution (512 x 256px; Figure 10). This is used 

by svDetect to automatically cull the visual search space and 

by svControl as an intersection complexity input feature. 

3. A top-down abstract map image of the intersection 

obtained from the GMaps API (Figure 13), which is used as a 

training feature in our work scheduler, svControl, to infer 
intersection complexity (like the depth data).  

4. Associated intersection GIS metadata, also provided by the 

GMaps API, such as latitude/longitude, GSV image age, 

street and city names, and intersection topology.  

svLabel: Human-Powered GSV Image Labeling 

In Tohme, intersections are labeled either manually, via 

svLabel, or automatically via svDetect. svLabel is a fully 

interactive online tool written in Javascript and PHP for 

finding and labeling curb ramps and missing curb ramps in 

GSV images (Figures 5-7). Unlike much previous crowd-

sourcing GSV work, which uses static imagery to collect 

labels [22–24], our labeling tool builds on Bus Stop CSI 

[26] to provide a fully interactive 360 degree view of the 

GSV panoramic image. While this freedom increases user-

interaction complexity, it allows the user to more naturally 

explore the intersection and maintain spatial context while 

searching for curb ramps. For example, the user can pan 

    

    
Figure 5: Example curb ramp and missing curb ramp labels from our 

turk studies. The green/pink outline points denote presence/absence. 
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Figure 4: A workflow diagram depicting Tohme’s four main sub-

systems. In summary, svDetect processes every GSV scene producing 

curb ramp detections with confidence scores. svControl predicts 

whether the scene/detections contain a false negative. If so, the 

detections are discarded and the scene is fed to svLabel for manual 

labeling. If not, the scene/detections are forwarded to svVerify for 

verification. The workflow attempts to optimize accuracy and speed. 



around the virtual 3D-space from one corner to the next 

within an intersection. 

Using svLabel. When a turker accepts our HIT, they are 

immediately greeted by a three-stage interactive tutorial 

(see supplementary video included with paper). The stages 

progressively teach the turker about the interface (e.g., the 

location of buttons and other widgets), user interactions 

(e.g., how to label, zoom, and pan), and task concepts (e.g., 

the definition of a curb ramp). If mistakes are made, our 

tutorial tool automatically provides corrective guidance. 

Turkers must successfully complete one tutorial stage 

before moving on to the next. 

Once the tutorials are completed, we automatically position 

the turker in one of the audit area intersections and the 

labeling task begins in earnest. Similar to Bus Stop CSI 

[26], svLabel has two primary modes of interaction: 

Explorer Mode and Labeling Mode (Figure 6). When the 

user first drops into a scene, s/he defaults into Explorer 

Mode, which allows for exploration using Street View’s 

native controls. Users are instructed to pan around to 

explore the 360 degree view of the intersection and visual 

feedback is provided to track their progress (bottom-right 

corner of Figure 6). Note: users’ movement is restricted to 

the drop location. 

When the user clicks on either the Curb Ramp or Missing 

Curb Ramp buttons, the interface switches automatically to 

Labeling Mode. Here, mouse interactions no longer control 

the camera view. Instead, the cursor changes to a pen, 

allowing the user to draw an outline around the visual 

target—a curb ramp or lack thereof (Figure 5). We chose to 

have users outline the area rather than simply clicking or 

The user clicks on either the Curb Ramp button or the Missing Curb Ramp button to enter the Labeling Mode. The mouse 
cursor turns into a pen icon directing users to draw a label. In the Labeling Mode, the camera angle and location is fixed. 
The interface automatically returns to Explore Mode after each label is drawn. 

 

 

 

Figure 6: The svLabel interface. Crowd workers use the Explorer Mode to interactively explore the intersection (via pan and zoom) and switch to 

the Labeling Mode to label curb ramps and missing curb ramps. Clicking the Submit button uploads the target labels. The turker is then 

transported to a new location unless the HIT is complete. 

 

Figure 7: svLabel automatically tracks the camera angle and repositions any applied labels in their correct location as the view changes. When the 

turker pans the scene, the overlay on the map view is updated and the green “explored” area increases (bottom right of interface). Turkers can 

zoom in up to two levels to inspect distant corners. Labels can be applied at any zoom level and are scaled appropriately. 

The Explorer 
Mode allows the 
user to control 
the GSV camera 
angle. 

(c) The user begins labeling the new corner in the zoomed view 

The GSV pane is 
the primary 
interaction area 
for exploring and 
labeling. 

If the user cannot 
find anything to 
label in the 
scene, they can 
click the Skip 
button and 
provide details 
about their skip 
reasoning. 

The Status side 
panel provides 

details on the 
user’s progress. 

 

The user’s “view 
direction” and 

progress are 
represented in 

this top-down 2D 
map view. The 
observed area 

and unobserved 
area are overlaid 
with green-and-
gray translucent 

layers 
respectively. 

The user clicks 
the Submit 

button to upload 
their labels 

 

(a) After labeling one corner, the user pans to the right. (b) The user then zooms to get a closer look 



drawing a bounding box because the detailed outlines 

provide a higher degree of granularity for developing and 

experimenting with our CV algorithms. Once an outline is 

drawn, the user continues to search the intersection. Our 

tool automatically tracks the camera angle and repositions 

any applied labels in their correct location as the 

intersection view changes. In this way, the labels appear to 

“stick” to their associated targets. Once the user has 

surveyed the entire intersection by panning 360 degrees, 

s/he can submit the task and move on to the next task in the 

HIT, until all tasks are complete.  

Ground Truth Seeding. A single HIT is comprised of either 

five or six intersections depending on whether it contains a 

ground truth scene (a scene is just an intersection). This 

“ground truth seeding” [40] approach is commonly used to 

dynamically examine, provide feedback about, and improve 

worker performance. In our case, if a user makes a mistake 

at a ground truth scene, after hitting the submit button, we 

provide visual feedback about the error and show the proper 

corrective action (see video). The user must correct all 

mistakes before submitting a ground truth task. If no 

mistakes are detected, the user is congratulated for their 

good performance. In our current system, there is a 50% 

chance that a HIT will contain one ground truth scene. The 

user is not able to tell whether they are working on a ground 

truth scene until after they submit their work. 

svVerify: Human-Powered GSV Label Verification 

In addition to providing “curb ramp” and “missing curb 

ramp” labels, we rely on crowd workers to examine and 

verify the correctness of previously entered labels. This 

verification step is common in crowdsourcing systems to 

increase result quality (e.g., [24, 43]). svVerify (Figure 8) is 

similar to svLabel in appearance and general workflow but 

has a simplified interaction (clicking and panning only) and 

is for an easier task (clicking on incorrect labels).  

While we designed both svLabel and svVerify to maximize 

worker efficiency and accuracy, our expectation was that 

the verification task would be significantly faster than 

initially providing manual labels [43]. For verification, 

users need not perform a time-consuming visual search 

looking for curb ramps to label but rather can quickly scan 

for incorrect labels (false positives) to delete. And, unlike 

labeling, which requires drawing polygonal outlines, the 

delete interaction is a single click over the offending label 

(similar to [46]). This enables users to rapidly eliminate 

false positive labels in a scene.  

To maintain verification efficiency, however, we did not 

allow the user to spatially locate false negatives. This would 

essentially turn the verification task into a labeling task, by 

asking users to apply new “curb ramp” or “curb ramp 

missing” labels when they noticed a valid location that had 

not been labeled. Instead, svVerify gathers information on 

false negatives at a coarser-grained level by asking the user 

if the current scene was missing any labels after s/he clicks 

the submit button. Thus, svVerify can detect the presence of 

false negatives in an intersection but not their specific 

location or quantity. 

Similar to svLabel, svVerify requires turkers to complete an 

interactive tutorial before beginning a HIT, which includes 

instructions about the task, the interface itself, and 

successfully verifying one intersection. Because 

verifications are faster than providing labels, we included 

10 scenes in each HIT (vs. the 5 or 6 in svLabel). In 

addition, we inserted one ground truth scene into every 

svVerify HIT rather than with 50% probability as was done 

with svLabel. Note that not all scenes are sent to svVerify 

for verification, as discussed in the svControl section 

below. We move now to describing the two more technical 

parts of Tohme: svDetect and svControl. 

svDetect: Detecting Curb Ramps Automatically 

While svLabel relies on manual labeling for finding curb 

ramps, svDetect attempts to do this automatically using CV. 

Because CV-based object detection is still an open 

problem—even for well-studied targets such as cars [18] 

and people [11]—our goal is to create a system that 

functions well enough to reduce the cost of curb ramp 

detection vs. a manual approach alone.  

svDetect uses a three-stage detection process. First, we train 

a Deformable Part Model (DPM) [18], one of the most 

successful recent approaches in object detection (e.g., [15]), 

as a first-pass curb ramp detector. Second, we post-process 

the resulting bounding boxes using non-maximum 

suppression [37] and 3D-point cloud data to eliminate 

detector redundancies and false positives. Finally, the 

remaining bounding boxes are classified using a Support 

Vector Machine (SVM) [8], which uses features not 

leveraged by the DPM, further eliminating false positives.  

svDetect was designed and tested iteratively. We attempted 

multiple algorithmic approaches and used preliminary 

experiments to guide and refine our approach. For example, 

we previously used a linear SVM with a Histograms of 

Oriented Gradients (HOG) feature descriptor [27] but found 

 
Figure 8: The svVerify interface is similar to svLabel but is designed 

for verifying rather than labeling. When the mouse hovers over a 

label, the cursor changes to a garbage can and a click removes the 

label. The user must pan 360 degrees before submitting the task.  



that the DPM was able to recognize curb ramps with larger 

variations. In addition, we found that though the raw GSV 

image size is 13,312 x 6,656 pixels, there were no detection 

performance benefits beyond 4,096 x 2,048px (the 

resolution used throughout this paper). Because it helps 

explain our design rationale for Tohme, we include our 

evaluation experiments for svDetect in this section rather 

than later in the paper. 

First Stage: The Curb Ramp Deformable Part Model (DPM) 

DPMs are comprised of two parts: a coarse-grained model, 

called a root filter, and a higher resolution parts model, 

called a parts filter. DPMs are commonly applied to human 

detection in images, which provides a useful example. For 

human detection, the root filter captures the whole human 

body while part filters are for individual body parts such as 

the head, hand, and legs (see [17]). The individual parts are 

learned automatically by the DPM—that is, they are not 

explicitly defined a priori. In addition, how these parts can 

be positioned around the body (the root filter) is also 

learned and modeled via displacement costs. This allows a 

DPM to recognize different configurations of the human 

body (e.g., sitting vs. standing).  

In our case, the root filter describes the general appearance 

of a curb ramp while part filters account for individual 

components (e.g., edges of the ramp and transitions to the 

road). DPM creates multiple components for a single model 

(Figure 9) based on bounding box aspect ratios. We suspect 

that each component implicitly captures different 

viewpoints of a curb ramp. For our DPM, we used code 

provided by [20]. 

Second Stage: Post-Processing DPM Output 

In the second stage, we post-process the DPM output in two 

ways. First, similar to [37], we use non-maximum 

suppression (NMS) to eliminate redundant bounding boxes. 

NMS is common in CV and works by greedily selecting 

bounding boxes with high confidence values and removing 

overlapping boxes with lower scores. Overlap is defined as 

the ratio of intersection of the two bounding boxes over the 

union of those boxes. Based on the criteria established by 

the PASCAL Visual Object Classes challenge [16], we set 

our NMS overlap threshold to 50%.  

Our second post-processing step uses the 3D-point cloud 

data to eliminate curb ramp detections that occur above the 

ground plane (e.g., bounding boxes in the sky are removed). 

To do so, the 512 x 256px depth image is resized to the 

GSV image size (4096 x 2048px) using bilinear 

interpolation. For each pixel, we calculate a normal vector 

and generate a mask for those pixels with a strong vertical 

component. These pixels correspond to the ground plane. 

Bounding boxes outside of this pixel mask are eliminated 

(Figure 10 and 11).  

Third Stage: SVM-Based Classification 

Finally, in the third stage, the remaining bounding boxes 

are fed into an additional classifier: an SVM. Because the 

DPM relies solely on gradient features in an image, it does 

not utilize other important discriminable information such 

as color or position of the bounding box. Given that street 

intersections have highly constrained geometrical 

configurations, curb ramps tend to occur in similar 

locations—so detection position is important. Thus, for 

each bounding box, we create a feature vector that includes: 

RGB color histograms, the top-left and bottom-right corner 

coordinates of the bounding box in the GSV image along 

with its width and height, and the detection confidence 

score from the DPM detector. We use the SVM as a binary 

classifier to keep or discard detection results from the 

second stage. 

svDetect Training and Results 

Two of the three svDetect stages require training: the DPM 

in Stage 1 and the SVM in Stage 3. For training and testing, 

we used two-fold cross validation across the 1,086 GSV 

scenes and 2,877 ground truth curb ramp labels. The GSV 

scenes were randomly split in half (543 scenes per fold) 

with one fold initially assigned for training and the other for 

testing. This process was then repeated with the training 

and testing folds switched. 

To train the DPM (Stage 1), we transform the polygonal 

ground truth labels into rectangular bounding boxes, which 

are used as positive training examples. DPM uses a sliding 

window approach, so the rest of the GSV scene is treated as 

negative examples (i.e., comprised of negative windows). 

For each image in the training set, the DPM produces a set 

of bounding boxes with associated confidence scores. The 

number of bounding boxes produced per scene is contingent 

on a minimum score threshold. This threshold is often 

learned empirically (e.g., [1]). A high threshold would 

   

   

   
(a) Root filter (b) Parts filter (c) Displacement costs 

Figure 9: The trained curb ramp DPM model. Each row represents 

an automatically learned viewpoint variation. The root and parts 

filter visualize learned weights for the gradient features. The 

displacement costs for parts are shown in (c). 

  

  

Figure 10: Using code from [39], we download GSV’s 3D-point cloud 

data and use this to create a ground plane mask to post-process DPM 

output. The 3D depth data is coarse: 512 x 256px. 



produce a small number of bounding boxes, which would 

likely result in high precision and low recall; a low 

threshold would likely lead to low precision and high recall.   

To train the SVM (Stage 3), we use the post-processed 

DPM bounding boxes from Stage 2. The bounding boxes 

are partitioned into positive and negative samples by 

calculating area overlap with the ground truth labels. 

Though there is no universal standard for evaluating “good 

area overlap” in object detection research, we use 20% 

overlap (from [19]). Prior work suggests that even 10-15% 

overlap agreement at the pixel level would be sufficient to 

confidently localize accessibility problems in images [24]. 

Thus, positive samples are boxes that overlap with ground 

truth by more than 20%; negative samples are all other 

boxes. We extract the aforementioned training features 

from both the positive and negative bounding boxes. Note 

that SVM parameters (e.g., coefficient for slack variables) 

are automatically selected by grid search during training. 

Results. To analyze svDetect’s overall performance and to 

determine an appropriate confidence score cutoff for 

svDetect, we stepped through various DPM detection 

thresholds (from -3-to-3 with a 0.01 step) and measured the 

results. For each threshold, we calculated true positive, 

false positive, and false negative detections for each scene. 

True positives were assessed as bounding boxes that had 

20% overlap with ground truth labels and that had a 

detection score higher than the currently set threshold. The 

results are graphed on a precision-recall curve in Figure 12. 

To balance the number of true positive detections and false 

positives in our system, we selected a DPM detection 

threshold of -0.99. At this threshold, svDetect generates an 

average of 7.0 bounding boxes per intersection (SD=3.7); 

see Figure 11 for examples. Note: svDetect failed to 

generate a bounding box for 15 of the 1,086 intersections. 

These are still included in our performance comparison. 

In the ideal, our three-stage detection framework would 

have both high precision and high recall. As can be 

observed in Figure 12, this is obviously not the case as 

~20% of the curb ramps are never detected (i.e., the recall 

metric never breaches 80%). With that said, automatically 

finding curb ramps using CV is a hard problem due to 

viewpoint variation, illumination, and within/between class 

variation. This is why Tohme combines automation with 

manual labor using svControl. 

svControl: Scheduling Work via Performance Prediction 

svControl is a machine-learning module for predicting CV 

performance and assigning work to either a manual labor 

   

   

   
(a) Downtown DC (b) Residential Saskatchewan (c) Residential DC 

Figure 11: Example results from svDetect’s three-stage curb ramp detection framework. Bounding boxes are colored by confidence score (lighter is 

higher confidence). As this figure illustrates, setting the detection threshold to -0.99 results in a relatively low false negative rate at a cost of a high 

false positive rate (false negatives are more expensive to correct). Many false positives are eliminated in Stages 2 and 3. The effect of Stage 2’s 

ground plane mask is evident in (b). Acronyms: TP=true positive; FP=false positive; FN=false negative. 
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Figure 12: The precision-recall curve of the three-stage curb ramp 

detection process constructed by stepping through various DPM 

detection thresholds (from -3-to-3 with a 0.01 step). For the final 

svDetect module, we selected a DPM detection threshold of -0.99, 

which balances true positive detections with false positives.  

svDetect’s final confidence 
score threshold was set 
to -0.99, which results in 67% 
recall and 26% precision. 



pipeline (svLabel) or an automated pipeline with human 

verification (svDetect + svVerify)—see Figure 4. We 

designed svControl based on three principles: first, that 

human-based verifications are fast and relatively low-cost 

compared to human-based labeling; second, CV is fast and 

inexpensive but error prone both in producing high false 

positives and false negatives; third, false negatives are more 

expensive to correct than false positives. 

From these principles, we derived two overarching design 

questions: first, given the high cost of human labeling and 

relative low-cost of human verification, could we optimize 

CV performance with a bias towards a low false negative 

rate (even if it meant an increase in false positives)? 

Second, given that false negatives cannot be eliminated 

completely from svDetect, can we predict their occurrence 

based on features of an intersection and use this to divert 

work to svLabel instead for human labeling? 

Towards the first question, biasing CV performance 

towards a certain rate of false negatives is trivial. It is 

simply a matter of selecting the appropriate threshold on the 

precision/recall curve (recall that the threshold that we 

selected was -0.99). The second question is more complex. 

We iterated over a number of prediction techniques and 

intersection features before settling on a linear SVM and 

Lasso regression model [44] with the following three types 

of input features:  

 svDetect results (16 features): For each GSV image, we 

include the raw number of bounding boxes output from 

svDetect, the average, median, standard deviation, and range 

of confidence scores of all bounding boxes in the image, and 

descriptive statistics for their XY-coordinates. Importantly, we 

did not use the correctness of the bounding box as a  feature 

since this would be unknown during testing. 

 Intersection complexity (2 features): We calculate 

intersection complexity via two measures: cardinality (i.e., 

how many streets are connected to the target intersection) and 

an indirect measure of complexity, for which we count the 

number of street pixels in a stylized top-down Google Map. 

We found that high pixel counts correlate to high intersection 
complexity (Figure 13). 

 3D-point cloud data (5 features): svDetect struggles to detect 

curb ramps that are distant in a scene—e.g., because the 

intersection is large or because the GSV car is in a sub-optimal 

position to photograph the intersection. Thus, we include 

descriptive statistics of depth information of each scene (e.g., 
average, median, variance). 

We combine the above features into a single 23-

dimensional feature vector for training and classification. 

svControl Training and Test Results 

We train and test svControl with two-fold cross validation 

using the same train and test data as used for svDetect. 

Given that the goal of svControl is to predict svDetect 

performance, namely the occurrence of false negatives, we 

define a svDetect failure as a GSV scene with at least one 

false negative curb ramp detection. The SVM model is 

trained to make a binary failure prediction with the 

aforementioned features. Similarly, the Lasso regression 

model is trained to predict the raw number of false 

negatives of svDetect (regression value > 0.5 is failure).  

To help better understand the important features in our 

models, we present the top three correlation coefficients for 

both. For the SVM, the top coefficients were the label’s x-

coordinate variance (0.91), the mean confidence score of 

automatically detected labels (0.69), and the minimum 

scene depth (0.67). For the Lasso model, the top three were 

mean scene depth (0.69), median scene depth (-0.28), and, 

similar to the SVM, the mean confidence score of the 

automatically detected labels (0.21). If either the SVM or 

the Lasso model predicts failure on a particular GSV scene, 

svControl routes that scene to svLabel instead of svVerify.  

svControl Results. We assessed svControl’s prediction 

performance across the 1,086 scenes. While not perfect, our 

results show that svControl is capable of identifying 

svDetect failures with high probability—we correctly 

predicted 397 of the 439 svDetect failures (86.3%); 

however, this high recall comes at a cost of precision: 404 

of the total 801 scenes (50.4%) marked as failures were 

false positives. Given that we designed svControl to be 

conservative (i.e., pass more work to svLabel if in doubt 

about svDetect), this accuracy balance is reasonable. 

Below, we examine whether this is sufficient to provide 

performance benefits for Tohme. 

STUDY 2: EVALUATING TOHME 

To examine the effectiveness of Tohme for finding curb 

ramps in GSV images and to compare its performance to a 

baseline approach, we performed an online study with 

MTurk in spring 2014. Our goal here is threefold: first, and 

most importantly, to investigate whether Tohme provides 

performance benefits over manual labeling alone (baseline); 

second, to understand the effectiveness of each of Tohme’s 

sub-systems (svLabel, svVerify, svDetect, and svControl); 

and third, to uncover directions for future work in 

preparation for a public deployment. 

Tohme Study Method 

Similar to Hara et al. [24], we collected more data than 

necessary in practice so that we could simulate performance 

with different workflow configurations post hoc. To allow 

    

    

Figure 13: We use top-down stylized Google Maps (bottom row) to 

infer intersection complexity by counting black pixels (streets) in each 

scene. A higher count correlates to higher complexity. 



us to compare Tohme vs. feeding all scenes to either 

workflow on their own (svLabel and svDetect+svVerify), 

we ran all GSV scenes through both. To avoid interaction 

effects, turkers hired for one workflow (labeling) could not 

work on the other (verifying) and vice versa.  

Second, to more rigorously assess Tohme and to reduce the 

influence of any one turker on our results, we hired at least 

three turkers per scene for each workflow and used this data 

to perform Monte Carlo simulations. More specifically, for 

both workflows, we randomly sampled one turker from 

each scene, calculated performance statistics (e.g., 

precision), and repeated this process 1,000 times. 

Admittedly, this is a more complex evaluation than simply 

hiring one turker per scene and computing the results; 

however, the Monte Carlo simulation allows us to derive a 

more robust indicator of Tohme’s expected future 

performance.  

Of the 1,086 GSV scenes (street intersections) in our 

dataset, we reserved 40 for ground truth seeding, which 

were randomly selected from the eight geographic areas (5 

scenes from each). We calculated HIT payment rates based 

on MTurk pilot studies: $0.80 for svLabel HITs (five 

intersections; $0.16 per intersection) and $0.80 for svVerify 

(ten intersections; $0.08 per intersection). As noted in our 

system description, turkers had to successfully complete 

interactive tutorials before beginning the tasks. 

Analysis Metrics 

To assess Tohme, we used the following measures: 

 Label overlap compared to ground truth: as described in 

the svDetect section, we use 20% overlap as our correctness 
threshold (from [24]).  

 We calculate standard object detection performance 

metrics including precision, recall, and F-measure based on 
this 20% area overlap—the same overlap used by svDetect. 

 Human time cost: cost is calculated by measuring completion 

times for each intersection in svLabel and svVerify.  

Tohme Study Results 

We first present high-level descriptive statistics of the 

MTurk HITs before focusing on the comparison between 

Tohme vs. our baseline approach (pure manual labeling 

with svLabel). We provide additional analyses that help 

explain the underlying trends in our results. 

Descriptive Statistics of MTurk Work 

To gather data for our analyses, we hired 242 distinct 

turkers for the svLabel pipeline and 161 turkers for the 

svVerify pipeline (Table 3). As noted previously, all 1,046 

GSV scenes were fed through both workflows. For svLabel, 

turkers completed 1,270 HITs (6,350 labeling tasks) 

providing 17,327 curb ramp labels and 3,462 missing curb 

ramp labels. For svVerify, turkers completed 582 HITs 

(5,820 verification tasks) and verified a total of 42,226 curb 

ramp labels. On average, turkers eliminated 4.9 labels per 

intersection (SD=2.9). We hired an average of 6.1 (SD=0.6) 

turkers per intersection for svLabel and 5.6 (SD=0.6) for 

svVerify. 

Evaluating Tohme’s Performance 

To evaluate Tohme’s overall performance, we first 

examined how well each pipeline would perform on its own 

across the entire dataset (1,046 scenes). This provides two 

baselines for comparison: (i) the svDetect + svVerify results 

show how well Tohme would perform if the svControl 

module passed all work to this pipeline and, similarly, (ii) 

the svLabel results show what would happen if we only 

relied on manual labor for finding and labeling curb ramps.  

We found that Tohme achieved similar but slightly lower 

curb ramp detection results compared to the manual 

approach alone (F-measure: 84% vs. 86%) but with a much 

lower time cost (13% reduction); see Figure 14. As 

 Turkers 
GSV 

Scenes  
HITs Tasks 

Avg. Turkers / 
Intersection 

Label Stats 
Avg. Task 

Time 

SVLABEL 242 1,046 1,270 6,350 6.1 (0.6) 
20,789 labels  

(17,327CRs, 3,462MCRs) 
94.1s (144.4s) 

SVVERIFY 161 1,046 582 5,820 5.6 (0.6) 
42,226 verified labels 
(28,801RLs, 13,425KLs) 

43.2 (48.7s) 

Table 3: An overview of the MTurk svLabel and svVerify HITs. 

While Tohme’s svControl system would, in practice, split work 

between the svLabel and svDetect+svVerify pipelines, we fed every 

GSV scene to both to perform our analyses. Acronyms above include 

CRs=Curb Ramps; MCRs=Missing Curb Ramps; RLs=Removed 

Labels; KLs=Kept Labels. svVerify was 2.2x faster than svLabel. 

 

Figure 14: Tohme achieves comparable results to a manual labeling 

approach alone but with a 13% reduction in time cost. Error bars are 

standard deviation. 

Curb Ramp Detections Results from Monte Carlo  

Simulations (1,046 GSV Scenes) 

 

Figure 15:  svControl allocated 769 scenes to svLabel and 277 scenes 

to svVerify. 379 out of 439 scenes (86.3%) where svDetect failed were 

allocated “correctly” to svLabel. Recall that svControl is conservative 

in routing work to svVerify because false negative labels are expensive 

to correct; thus, the 86.3% comes at a high false positive cost (390). 

This is work that could 
have been routed to 
svVerify but was sent to 
svLabel (svControl is 
overly conservative) 

Low false negative rate 
indicates tasks were 
correctly routed 

svControl Prediction Accuracy and Task Allocation 



expected, while the svDetect + svVerify pipeline is 

relatively inexpensive, it performed the worst (F-measure: 

63%). These findings show that the svControl module 

routed work appropriately to maintain high accuracy but at 

a reduced cost. Tohme reduces the average per-scene 

processing time by 12 seconds compared to svLabel alone. 

The overall task completion times were 12.3, 27.3, and 23.7 

hours for svDetect + svVerify, svLabel, and Tohme 

respectively.   

The above results were calculated using the aforementioned 

Monte Carlo method. If we, instead, use only the first turker 

to arrive and complete the task, our results are largely the 

same. The F-measures are 63%, 86%, and 85% respectively 

for svDetect + svVerify, svLabel, and Tohme with a 10% 

drop in cost for Tohme (rather than 13%). This includes 65 

distinct turkers for svDetect + svVerify, 97 for svLabel, and 

149 for Tohme.  

Task Allocation by svControl 

As the workflow scheduler, the svControl module is a 

critical component of Tohme. Because the svVerify 

interface does not allow for labeling (e.g., correcting false 

negatives), the svControl system is conservative—it routes 

most of the work to svLabel otherwise many curb ramps 

would possibly remain undetected. Of the 1,046 scenes, 

svControl predicted svDetect to fail on 769 scenes (these 

results are the same as presented in the svControl section 

but with the 40 ground truth scenes removed). Thus, 73.5% 

of all scenes were routed to svLabel for manual work and 

the rest (277) were fed to svVerify for human verification 

(Figure 15). Again, svControl’s true positive rate is high: 

86%. However, if svControl worked as a perfect classifier, 

439 scenes would have been forwarded to svLabel and 607 

to svVerify. In this idealized case, Tohme’s cost drops to 

27.7% compared to a manual labeling approach with the 

same F-measure as before (84%). Thus, assuming limited 

improvements in CV-based curb ramp detections in the near 

future, a key area for future work will be improving the 

workflow control system.  

Where Humans and Computers Struggle 

The key to improving both CV and human labeling 

performance is to understand where and why each sub-

system makes mistakes. To assess the detection accuracy of 

human labelers, we calculated the average F-measure score 

per scene based on the average number of true positives 

(TP), false positives (FP), and false negatives (FN). For 

example, if the average for a scene was (TP, FP, FN) = (1, 

1, 2), then (Precision, Recall, F-measure) = (0.5, 0.3, 0.4). 

For CV, we simply used the F-measure score for each scene 

based on our svDetect results. We sorted the two F-measure 

lists and visually inspected the best and worst performing 

scenes for each. For the top and bottom 10, the average F-

measure scores were 99% and 0% for CV and 100% and 

25% for human labeling respectively. Common problems 

are summarized in Figure 16.  

Crowd workers struggled with labeling distant curb ramps 

(scale) or due to placement and angle (viewpoint variation). 

To mitigate this, future labeling interfaces could allow the 

worker to “walk” around the intersection to select better 

viewpoints (similar to [26]); however, this will increase 

user-interaction complexity and labeling time. Perhaps as 

should be expected, crowd workers were much more adept 

at dealing with occlusion than CV—even if a majority of a 

curb ramp was occluded, a worker could infer its location 

and shape (e.g., middle occlusion picture). CV struggled for 

all the reasons noted in Figure 16. Given the tremendous 

variation in curb ramp design and capture angles, a larger 

training set may have improved our results. Moreover, 

because multiple views of a single intersection are available 

      

      

      
Figure 16: Finding curb ramps in GSV imagery can be difficult. Common problems include occlusion, illumination, scale differences because of 

distance, viewpoint variation (side, front, back), between class similarity, and within class variation. For between class similarity, many structures 

exist in the physical world that appear similar to curb ramps but are not. For within class variation, there are a wide variety of curb ramp designs 

that vary in appearance. White arrows are used in some images to draw attention to curb ramps. Some images contain multiple problems. 
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in GSV via neighboring panoramas, these additional 

perspectives could be combined to potentially improve 

scene structure understanding and mitigate issues with 

occlusion, illumination, scale, and viewpoint variation. The 

semantic issues—e.g., confusing structures similar to curb 

ramps—are obviously much more difficult for CV than 

humans. We describe other areas for improvement in the 

Discussion. 

Effect of Area Overlap Threshold on Performance 

As noted previously, there is no universal standard for 

selecting an area overlap threshold in CV; this decision is 

often domain dependent. To investigate the effect of 

changing the overlap threshold on performance, we 

measured precision, recall, and F-measure at different 

values from 0-50% at a step size of 10% (Figure 17). For 

overlap=0%, at least 1px of a detected bounding must 

overlap with a ground truth label to be considered correct. 

A few observations: first, as expected, performance 

decreases as the overlap threshold increases; however, the 

relative performance difference between Tohme and 

baseline (svLabel) stays roughly the same. For example, at 

0% overlap, the (Precision, Recall, F-measure) of Tohme is 

(85%, 89%, 87%) and (86%, 90%, 88%) for svLabel and at 

50% overlap, (54%, 55%, 55%) vs. (57%, 59%, 58%). 

Thus, Tohme’s relative performance is consistent regardless 

of overlap threshold (i.e., slightly poorer performance but 

cheaper). Second, there appears to be a more substantial 

performance drop starting at ~30%, which suggests that 

obtaining curb ramp label agreement at the pixel level 

between human labelers and ground truth after this point is 

difficult. Finally, though svDetect + svVerify has much 

greater precision than svDetect alone, this increase comes at 

a cost of recall—a gap which widens as the overlap 

threshold becomes more aggressive. So, though human 

verifiers help increase precision, they are imperfect and 

sometimes delete true positive labels. 

DISCUSSION 

Our research advances recent work using GSV and 

crowdsourcing to remotely collect data on accessibility 

features of the physical world (e.g., [22–24, 26]) by 

integrating CV and a machine learning-based workflow 

scheduler. We showed that a trained CV-based curb ramp 

detector (svDetect) found 63% of curb ramps in GSV 

scenes and fast, human-based verifications further 

improved the overall results. We also demonstrated that a 

novel machine-learning based workflow controller, 

svControl, could predict CV performance and route work 

accordingly. Below, we discuss limitations and 

opportunities for future work. 

Improving Human Interfaces 

How much context is necessary for verification? We were 

surprised that verification tasks were only 2.2x faster than 

labeling tasks. Though we attempted to design both 

interfaces for rapid user interaction, there is some basic 

overhead incurred by panning and searching in the 360-

degree GSV view. In an attempt to eliminate this overhead, 

we have designed a completely new type of verification 

interface, quickVerify, that simply presents detected 

bounding boxes in a grid view (Figure 18). Similar to the 

facial recognition verifier in Google Picasa, these boxes can 

be rapidly confirmed or rejected with a single-click and a 

new bounding box appears in its place. In a preliminary 

experiment using 160 GSV scenes and 59 distinct turkers, 

however, we found that accuracy with quickVerify dropped 

significantly. Unlike faces, we believe that curb ramps 

require some level of surrounding context to accurately 

perceive their existence. More work is needed to determine 

the appropriate amount of surrounding view context to 

balance speed and accuracy. 

Improving human labeling. Human labeling time could be 

reduced if point-and-click interactions were used for 

labeling targets rather than outlining; however, as 

demonstrated in Figure 16, curb ramps vary dramatically in 

size, scale, and shape. Clicking alone would be insufficient 

for CV training. Moreover, labeling will always be more 

costly than verification because it is a more difficult task 

(i.e., finding elements in an image requires visual search 

and a higher mental load). With that said, we currently 

discard all svDetect bounding boxes—even those with a 

high confidence score—when a scene is routed to svLabel. 

Future work should explore how to, instead, best utilize this 

CV data to improve worker performance (e.g., by showing 

 

Figure 18: In the quickVerify interface, workers could randomly 

verify CV curb ramp detection patches. After providing an answer 

for a given detection, the patch would “explode” (bottom left) and a 

new one would load in its place. Though fast, verification accuracies 

went down in an experiment of 160 GSV scenes and 59 turkers. 

 

 

 

 

 

 

 

Figure 17: As expected, performance drops as the area overlap 

threshold increases; however, the relative difference between Tohme 

and baseline (svLabel) remains consistent.  
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detected bounding boxes with high scores to the user or as a 

way to help verify human labels). Finally, similar to 

quickVerify, future work could explore GSV panorama 

labeling that is not projected onto a 3D-sphere but is instead 

flattened into a 2D zoomable interface (e.g., [33]) or 

specially rendered to increase focus on intersection corners. 

Improving Automated Approaches  

As the first work in automatically detecting curb ramps 

using CV, there are no prior systems with which to directly 

compare our performance. Having said that, there is much 

room for improvement and advances in CV will only 

increase the overall efficacy of our system. 

Improving CV-based curb ramp detection. We are 

currently exploring three areas of future work: (i) Context 

integration. While we use some context information in 

Tohme (e.g., 3D-depth data, intersection complexity 

inference), we are exploring methods to include broader 

contextual cues about buildings, traffic signal poles, 

crosswalks, and pedestrians as well as the precise location 

of corners from top-down map imagery. (ii) 3D-data 

integration. Due to low-resolution and noise, we currently 

use 3D-point cloud data as a ground plane mask rather than 

as a feature to our CV algorithms. We plan to explore 

approaches that combine the 3D and 2D imagery to 

increase scene structure understanding (e.g., [28]). If higher 

resolution depth data becomes available, this may be useful 

to directly detect the presence of a curb or corner, which 

would likely improve our results. (iii) Training. Our CV 

algorithms are currently trained using GSV scenes from all 

eight city regions in our dataset. Given the variation in curb 

ramp appearance across geographic areas, we expect that 

performance could be improved if we trained and tested per 

city. However, in preliminary experiments, we found no 

difference in performance. We suspect that this is due to the 

decreased training set size. In the future, we would like to 

perform training experiments to study the effects of per-city 

training and to identify minimal training set size. Relatedly, 

we plan to explore active learning approaches where crowd 

labels train the system over time.  

Improving the workflow controller. While our current 

workflow controller focuses on predicting CV performance, 

future systems should explore modeling and predicting 

human worker performance and adapting work assignments 

accordingly. For example, struggling workers could be fed 

scenes that are predicted to be easy, or hard scenes can be 

assigned to more than one worker to take majority vote [10, 

31]. Similar to CV detection, per-city training and active 

learning should also be explored. 

Who pays? The question of who will pay for data collection 

(or if payment is even necessary) in the future is an 

important, unresolved one. Our immediate plans are to 

build an open website where anyone can contribute 

voluntarily. From conversations with motor impaired (MI) 

persons and the accessibility community as a whole (e.g., 

non-profit organizations, families of those with MI), we 

believe there is a strong demand for this system. For 

example, with a public version of Tohme, a concerned, 

motivated father could easily label over 100 intersections in 

his neighborhood in a few hours. A website akin to 

walkscore.com could then visualize the accessibility of that 

neighborhood using heatmaps and also calculate accessible 

pedestrian routes. 

Limitations 

There are two primary limitations to our work. First, there 

is a workload imbalance between svLabel and svDetect. 

svLabel gathers explicit data on both curb ramps and 

missing curb ramps while svDetect only detects the former. 

It is likely that if the svLabel task involved only labeling 

curb ramps, the labeling task completion time would go 

down, which would affect our primary results. And, while 

the lack of a detected curb ramp could be equated to a 

missing curb ramp label for svDetect, we have not yet 

performed this analysis. Clearly, more explorations are 

needed here but we believe our initial examinations are 

sufficient to show the potential of Tohme. 

Second, there is no assessment of how our curb ramp 

detection results compare to traditional auditing approaches 

(e.g., performed by city governments). Anecdotally, we 

have found many errors in the DC government curb ramp 

dataset [12]; however, more research is necessary to 

uncover whether our approach is faster, cheaper, and/or 

more accurate. Ultimately, Tohme must produce 

sufficiently good data to enable new types of accessibility-

aware GIS applications (e.g., pedestrian directions routed 

through an accessible sidewalk path).  

CONCLUSION 

This paper contributes the design and evaluation of a new 

tool, Tohme, for semi-automatically detecting curb ramps 

in GSV images using crowdsourcing, computer vision, and 

machine learning. To our knowledge, we are the first work 

to design and investigate CV algorithms for curb ramp 

detection, an important sidewalk accessibility attribute. We 

are also the first to combine crowdsourcing with automated 

methods for collecting accessibility information about the 

physical world in GSV scenes. Tohme’s custom workflow 

controller predicts CV performance and routes work 

accordingly to balance accuracy and human labor. Through 

an MTurk study of 1,086 intersections across four North 

American cities, we showed that Tohme could provide 

comparable curb ramp detection accuracy at a 13% 

reduction in cost. As computer vision and machine learning 

algorithms continue to improve, Tohme should only 

become more efficient.  

While this paper focuses specifically on curb ramps, we 

believe a similar approach could be applied to analyze the 

accessibility of external building facades (e.g., the presence 

of stairways), the safety of intersections (e.g., the presence 

of painted cross walks), or even the accessibility of store 

aisles as mapping companies increasingly focus on the 

indoors (e.g., [21]). 
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