
Tohme: Detecting Curb Ramps in Google Street View Using
Crowdsourcing, Computer Vision, and Machine Learning

Kotaro Hara
1,2

, Jin Sun, Robert Moore
1,2

, David Jacobs, Jon E. Froehlich
1,2

1
Makeability Lab |

2
Human Computer Interaction Lab (HCIL)

Computer Science Department, University of Maryland, College Park

{kotaro, jinsun, dwj, jonf}@cs.umd.edu; rmoore15@umd.edu

ABSTRACT

Building on recent prior work that combines Google Street

View (GSV) and crowdsourcing to remotely collect

information on physical world accessibility, we present the

first “smart” system, Tohme, that combines machine

learning, computer vision (CV), and custom crowd

interfaces to find curb ramps remotely in GSV scenes.

Tohme consists of two workflows, a human labeling

pipeline and a CV pipeline with human verification, which

are scheduled dynamically based on predicted performance.

Using 1,086 GSV scenes (street intersections) from four

North American cities and data from 403 crowd workers,

we show that Tohme performs similarly in detecting curb

ramps compared to a manual labeling approach alone (F-

measure: 84% vs. 86% baseline) but at a 13% reduction in

time cost. Our work contributes the first CV-based curb

ramp detection system, a custom machine-learning based

workflow controller, a validation of GSV as a viable curb

ramp data source, and a detailed examination of why curb

ramp detection is a hard problem along with steps forward.

Author Keywords

Crowdsourcing accessibility, computer vision, Google

Street View, Amazon Mechanical Turk

INTRODUCTION

Recent work has examined how to leverage massive online

map datasets such as Google Street View (GSV) along with

crowdsourcing to collect information about the accessibility

of the built environment [22–26]. Early results have been

promising; for example, using a manually curated set of

static GSV images, Hara et al. [24] found that minimally

trained crowd workers in Amazon Mechanical Turk

(turkers) could find four types of street-level accessibility

problems with 81% accuracy. However, the sole reliance on

human labor limits scalability.

In this paper, we present Tohme
1
, a scalable system for

remotely collecting geo-located curb ramp data using a

combination of crowdsourcing, Computer Vision (CV),

machine learning, and online map data. Tohme lowers the

overall human time cost of finding accessibility problems in

GSV while maintaining result quality (Figure 1). As the

first work in this area, we limit ourselves to sidewalk curb

ramps (sometimes called “curb cuts”), which we selected

because of their visual salience, geospatial properties (e.g.,

often located on corners), and significance to accessibility.

1 Tohme is a Japanese word that roughly translates to “remote eye.”

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

UIST '14, October 05 - 08 2014, Honolulu, HI, USA

Copyright 2014 ACM 978-1-4503-3069-5/14/10$15.00.

http://dx.doi.org/10.1145/2642918.2647403

Figure 1: In this paper, we present Tohme, a scalable system for semi-automatically finding curb ramps in Google Streetview (GSV) panoramic

imagery using computer vision, machine learning, and crowdsourcing. The images above show an actual result from our evaluation.

(a) Raw Google Street View (GSV) image

(b) Results of computer vision curb ramp
detection (lighter red is higher confidence)

(c) Results after crowdsourced verification

TP=8; FP=10; FN=0

TP=8; FP=0; FN=0

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2642918.2647403

For example, in a precedent-setting US court case in 1993,

the court ruled that the “lack of curb cuts is a primary

obstacle to the smooth integration of those with disabilities

into the commerce of daily life” and that “without curb cuts,

people with ambulatory disabilities simply cannot navigate

the city” [2].

While some cities maintain a public database of curb ramp

information (e.g., [1, 12]), this data can be outdated,

erroneous, and expensive to collect. Moreover, it is not

integrated into modern mapping tools. In a recent report,

the National Council on Disability noted that they could not

find comprehensive information on the “degree to which

sidewalks are accessible” across the US [38]. In addition,

the quality of data available in government systems is

contingent on the specific policies and technical

infrastructure of that particular local administration (e.g., at

the city and/or county level). While federal US legislation

passed in 1990 mandates the use of ADA-compliant curb

ramps in all new road construction and renovation [45], this

is not the case across the globe. Our overarching goal is to

design a scalable system that can remotely collect

accessibility information for any city across the world that

has streetscape imagery, which is now broadly available in

GSV, Microsoft Bing Maps, and Nokia City Scene.

Tohme is comprised of four custom parts: (i) a web scraper

for downloading street intersection data; (ii) two crowd

worker interfaces for finding, labeling, and verifying the

presence of curb ramps; (iii) state-of-the-art CV algorithms

for automatic curb ramp detection; and (iv) a machine

learning-based workflow controller, which predicts CV

performance and dynamically allocates work to either a

human labeling pipeline or a CV + human verification

pipeline. While Tohme is purely a data collection system,

we envision future work that integrates Tohme’s output into

accessibility-aware map tools (e.g., a heatmap visualization

of a city’s accessibility or a smart navigation system that

recommends accessible routes).

To evaluate Tohme, we conducted two studies using data

we collected from 1,086 intersections across four North

American cities. First, to validate the use of GSV imagery

as a reliable source of curb ramp knowledge, we conducted

physical audits in two of these cities and compared our

results to GSV-based audit data. As with previous work

exploring the concordance between GSV and the physical

world [4, 9, 22, 26, 41], we found high correspondence

between the virtual and physical audit data. Second, we

evaluated Tohme’s performance in detecting curb ramps

across our entire dataset with 403 turkers. Alone, the

computer vision sub-system currently finds 67% of the curb

ramps in the GSV scenes. However, by dynamically

allocating work to the CV module or to the slower but more

accurate human workers, Tohme performs similarly in

detecting curb ramps compared to a manual labeling

approach alone (F-measure: 84% vs. 86% baseline) but at a

13% reduction in human time cost.

In summary, the primary contribution of this paper is the

design and evaluation of the Tohme system as a whole,

with secondary contributions being: (i) the first design and

evaluation of a computer vision system for automatically

detecting curb ramps in images; (ii) the design and study of

a “smart” workflow controller that dynamically allocates

work based on predicted scene complexity from GIS data

and CV output; (iii) a comparative physical vs. virtual curb

ramp audit study (Study 1), which establishes that GSV is a

viable data source for collecting curb ramp data; and (iv) a

detailed examination of why curb ramp detection is a hard

problem and opportunities for future work in this domain.

RELATED WORK

We describe work in sidewalk assessment, crowdsourcing,

computer vision, and dynamic workflow allocation.

Sidewalk Assessment

Traditionally, sidewalk assessment has been conducted via

in-person street audits [42, 47] which are labor intensive

and costly [41], or via citizen call-in reports, which are

done on a reactive basis. Recent mobile apps such as

seeclickfix.com or NYC311 allow citizens to report street

infrastructure problems including damaged or missing curb

ramps. However, these systems require in situ observation

and thus do not scale as well as remote, virtual inquiry.

Crowdsourcing

Recently, Bigham et al. argued that current technological

infrastructure provides unprecedented access to large

sources of human power that can be harnessed to address

accessibility challenges [6] (e.g., via crowdsourcing).

Examples include VizWiz [5] and Legion:Scribe [35]. Most

relevant to this paper is the recent exploration of combining

GSV and crowdsourcing for collecting street-level

accessibility data including sidewalks [24], bus stops [26],

and intersections [22]. Though this prior work demonstrates

GSV as a potential accessibility data source, the studies do

not examine semi-automatic methods (e.g., using machine

learning or CV) as we do here.

Tohme’s performance is contingent on crowd workers’

speed and accuracy in processing GSV imagery. Prior work

exists in studying how to efficiently collect image labels

(e.g., [14, 43]). Su et al. investigated cost-performance

tradeoff between majority vote based labeling and

verification based data collection [43], finding quality

control via verification improves cost-effectiveness. Recent

work by Deng [14] explores methods of efficiently

collecting multiclass image annotations by incorporating

heuristics such as correlation, hierarchy, and sparsity (e.g.,

the presence of a keyboard in an image also suggests the

presence of correlated objects such as mouse and monitor);

however, to our knowledge, no prior work exists on

efficiently collecting image labels from crowd workers on

large panoramic imagery.

Computer Vision

There is a growing body of research applying CV

techniques to GSV [49–53]. For example, Xiao et al.

introduced automatic approaches to model 3D structures of

streetscape and building façades using GSV [49, 50]. Zamir

et al. showed that large-scale image localization, tracking,

and commercial entity identification are possible [51–53].

This work demonstrates the potential of combining CV with

GSV; however, automatically detecting curb ramps or other

accessibility features has not been studied.

Tohme builds on top of existing object detection algorithms

from the CV community [11, 17, 46]. For example, we use

Deformable Part Models (DPMs) [17, 18], one of the top-

performing approaches in the PASCAL Visual Object

Classes (VOC) challenge, a major object detection and

recognition competition [17]. Despite a decade-long effort,

however, object detection remains an open problem [7, 48].

For example, even the DPM, which won the “Lifetime

Achievement” Prize at the aforementioned PASCAL VOC

challenge, has reached 30% precision and 70% recall in

‘car’ detection [17]. Due to their variation in size, shape,

and appearance, curb ramps are similarly difficult to detect.

Consequently, we incorporate a “smart” workflow

algorithm that attempts to predict poor CV performance

and, in those instances, route work to human labelers.

Dynamic Workflow Allocation

Tohme uses machine learning to control its workflow for

efficiently collecting data from GSV. Typical workflow

adaptions include: varying the number of workers to recruit

for a task [31, 48], assigning stronger workers to harder

versions of a task [10], and/or fundamentally changing the

task an individual worker is given [30, 36] These workflow

decisions are made automatically by workflow controllers

often by analyzing worker performance history, inferring

task difficulty, or estimating cost.

Most relevant to our work is workflow adaptation research

in crowdsourcing systems [31, 36, 48]. For example, Lin et

al. and Welinder et al. rely on worker performance histories

to either assign different tasks [36] or recruit different

numbers of workers [48]. More similar to our work is [30,

31] who infer task difficulty via automated methods and

adapt work accordingly. For example, Kamar et al. [31]

analyzed image features with CV algorithms to predict

worker behaviors a priori on image annotation tasks and

used this to dynamically decide the number of workers to

recruit.

Though similar, our work is different both in problem

domain (finding curb ramps) as well as in approach. Rather

than vary the number of workers per task, our workflow

controller infers CV performance and decides whether to

use crowd worker labor for verifications or labeling. In

addition, we do not simply rely on image features or CV

output to determine workflow but also contextual

information such as intersection complexity and 3D-point

cloud data.

DATASET

Because sidewalk infrastructure can vary in quality, design,

and appearance across geographic areas, our study sites

include a range of neighborhoods from four North

American cities: Washington DC, Baltimore, Los Angeles,

and Saskatoon, Saskatchewan (Figure 2; Table 1). For each

city, we collected data from dense urban cores (shown in

blue) and semi-urban residential areas (shown in red). We

Figure 2: The eight urban (blue) and residential (red) audit areas used in our studies from Washington DC, Baltimore, LA, and Saskatoon. This

includes 1,086 intersections across a total area of 11.3km2. Among these areas, we physically surveyed 273 intersections (see annotations in a-d).

 WASHINGTON DC BALTIMORE LOS ANGELES SASKATOON OVERALL
Region Type Downtown Residential Downtown Residential Downtown Residential Downtown Residential

Total Area (km2) 1.52 1.13 0.73 2.24 1.91 1.89 0.74 1.13 11.28

of Intersections 140 124 132 139 132 132 141 146 1,086

of Curb Ramps* 818 352 476 229 358 186 321 137 2877

of Missing Curb Ramps* 8 35 32 69 43 214 24 222 647

Avg. GSV Data Age (SD) 1.9 yrs (0.77) 1.6 yrs (0.63) 2.1 yrs (0.75) 0.4 yrs (0.65) 2.0 yrs (0.31) 0.9 yrs (0.24) 4.0 yrs (0.0) 4.0 yrs (0.0) 2.2 (1.3)

Table 1: A breakdown of our eight audit areas. Age calculated from summer 2013. *These counts are based on ground truth data.

emphasized neighborhoods with potential high demand for

sidewalk accessibility (e.g., areas with schools, shopping

centers, libraries, and medical clinics).

We used two data collection approaches: (i) an automated

web scraper tool that we developed called svCrawl, which

downloads GIS-based intersection data, including GSV

images, within a geographically defined region; and (ii) a

physical survey of a subset of our study sites (four

neighborhoods totaling 273 intersections), which was used

to validate curb ramp infrastructure found in the GSV

images. In all, we used svCrawl to download data from

1,086 intersections across 11.3km
2
 (Table 1).

To create a ground truth dataset, two members of our

research team independently labeled all 1,086 scenes using

our custom labeling tool (svLabel). Label disagreements

were resolved by consensus. From the ground truth data, we

discovered 2,877 curb ramps and 647 missing curb ramps

(Figure 3). Of the 1,086 scenes, 218 GSV scenes did not

require marking a curb ramp or missing curb ramp because

the location was not a traditional intersection (e.g., an

alleyway with no vertical drop from the sidewalk). These

218 scenes are useful for exploring false positive labeling

behavior and were kept in our dataset. The remaining 868

intersections had on average 3.3 curb ramps (SD=2.3) and

0.75 missing curb ramps (SD=1.3) per intersection. A total

of 603/868 intersections were marked as not missing any

curb ramps. We use the ground truth labels for training and

testing our machine learning and CV algorithms and to

evaluate crowd worker performance.

At download time (summer 2013), the average age of the

GSV images was 2.2 years (SD=1.3). As image age is one

potential limitation in our approach, it is necessary to first

show that GSV is a reasonable data source for deriving curb

ramp information, which we do next.

STUDY 1: ASSESSING GSV AS A DATA SOURCE

To establish GSV as a viable curb ramp data source, we

must show: (i) that it presents unoccluded views of curb

ramps, (ii) that the curb ramps can be reliably found by

humans and, potentially, machines, and (iii) that the curb

ramps found in GSV adequately reflect the state of the

physical world. This study addresses each of these points.

Multiple studies have previously demonstrated high

concordance between GSV-based audits and audits

conducted in the physical world [4, 9, 22, 26]; however,

prior work has not examined curb ramps specifically.

Though this audit study was labor intensive, it is important

to establish GSV as a reliable data source for curb ramp

information, as it is the crux of our system’s approach.

We conducted physical audits in the summer of 2013 across

a subset of our GSV dataset: 273 intersections spanning

urban and residential areas in Washington DC and

Baltimore (Figure 1). We followed a physical audit process

similar to Hara et al. [26]. Research team members

physically visited each intersection, capturing geo-

timestamped pictures (Mean=15 per intersection; SD=5).

These images were analyzed post hoc for the actual audit.

Surveying the 273 intersections took approximately 25

hours as calculated by image capture timestamps.

Auditing Methodology.

For the auditing process itself, two additional research

assistants (different from the above) independently counted

the number of curb ramps and missing curb ramps at each

intersection in both the physical and GSV image datasets.

An initial visual codebook was composed based on US

government standards for sidewalk accessibility [32, 45].

Following the iterative coding method prescribed by

Hruschka et al. [29], a small subset of the data was

individually coded first (five intersections from each area).

The coders then met, compared their count data, and

updated the codebook appropriately to help reduce

ambiguity in edge cases. Both datasets were then coded in

entirety (including the original subset, which was recoded).

This process was iterated until high agreement was reached.

Calculating Inter-Rater Reliability between Auditors

Before comparing the physical audit data to the GSV audit

data, which is the primary goal of Study 1, we first

calculated inter-rater reliability between the two coders for

each dataset. We applied the Krippendorff’s Alpha (α)

statistical measure, which is used for calculating inter-rater

reliability of count data (see [34]). Results after each of the

three coding passes using the iterative scheme from [29] are

shown in Table 2. Agreement was consistently high, with

the 3
rd

 pass representing the reliability of codes in the final

code set. There was initially greater inconsistency in coding

missing curb ramps vs. coding existing curb ramps, perhaps

because identifying a missing ramp requires a deeper under-

standing of the intersection and proper ramp placement.

Figure 3: Example curb ramps (top two rows) and missing curb

ramps (bottom row) from our GSV dataset.

D
ow

nt
ow

n
D

C
D

ow
nt

ow
n

LA

Downtown DC Residential Baltimore Residential LA Residential Saskatoon

M
is

si
ng

 C
ur

b
Ra

m
ps

 PHYSICAL AUDIT IMAGE DATASET GSV AUDIT IMAGE DATASET
 1st Pass (α) 2nd Pass (α) 3rd Pass (α) 1st Pass (α) 2nd Pass (α) 3rd Pass (α)

Curb Ramp 0.959 0.960 0.989 0.927 0.928 0.989

Missing C. Ramp 0.647 0.802 0.999 0.631 0.788 0.999

Overall 0.897 0.931 0.996 0.883 0.917 0.996

Table 2: Krippendorff’s alpha inter-rater agreement scores between

two researchers on both the physical audit and GSV audit image

datasets. Following Hruschka et al.’s iterative coding methodology, a

3rd audit pass was conducted with an updated codebook to achieve

high-agreement scores—in our case, α > 0.996.

Comparing Physical vs. GSV Audit Data

With high agreement verified within each dataset, we can

now compare the count scores between the datasets. Similar

to [26, 41], we calculate a Spearman rank correlation

between the two count sets (physical and GSV). This was

done for both the curb ramp and missing curb ramp counts.

To enable this calculation, however, we first merged the

two auditor’s counts by taking the average of their counts

for missing curb ramps and the average for present curb

ramps at each intersection. Using these average counts, a

Spearman rank correlation was computed, which shows

high correspondence between datasets: ρ=0.996 for curb

ramps and ρ=0.977 for missing curb ramps (p < 0.001).

Overall, 1,008 curb ramps were identified in the virtual

audit compared to 1,002 with the physical audit; differences

were due to construction. The number of missing curb

ramps was exactly the same for both datasets (89).

Study 1 Summary

Though the age of images in GSV remains a concern, Study

1 demonstrates that there is remarkably high concordance

between curb ramp infrastructure in GSV and the physical

world, even though the average image age of our dataset

was 2.2 years. With GSV established as a curb ramp dataset

source, we now move on to describing Tohme.

A SCALABLE SYSTEM FOR CURB RAMP DETECTION

Tohme is a custom-designed tool for remotely collecting

geo-located curb ramp information using a combination of

crowdsourcing, CV, machine learning, and online map data.

It is comprised of four parts depicted in Figure 4: (i) a web

scraper, Street View Crawl (svCrawl), for downloading

street intersection data; (ii) two crowd worker interfaces for

finding, labeling, and verifying the presence of curb ramps

called svLabel and svVerify; (iii) state-of-the-art CV

algorithms for automatically detecting curb ramps

(svDetect); and (iv) a machine learning-based workflow,

called svControl, which predicts CV performance on a

scenes and allocates work accordingly.

We designed Tohme iteratively with small, informal pilot

studies in our laboratory to test early interface ideas. We

also performed larger experiments on Amazon Mechanical

Turk (MTurk) with a subset of our data to understand how

different interfaces affected crowd performance and, more

generally, how well crowds could perform our tasks. The

CV sub-system, svDetect, also evolved across multiple

iterations, and was trained and evaluated using the

aforementioned ground truth labels. While our ultimate goal

is to deploy Tohme publicly on the web, the current

prototype and experiments were deployed on MTurk.

Below, we describe each Tohme sub-system.

svCrawl: Automatic Intersection Scraping

svCrawl is a custom web scraper tool written in Python that

downloads GIS-related intersection data over a predefined

geographic region (Figure 2). It uses the Google Maps API

(GMaps API) to enumerate and extract street intersection

points within selected boundaries. For each intersection,

svCrawl downloads four types of data:

1. A GSV panoramic image at its source resolution (13,312 x
6,656px). This is our primary data element (e.g., Figure 1).

2. A 3D-point cloud, which is captured by the GSV car using

LiDAR [3]. The depth data overlays the GSV panorama but

at a coarser resolution (512 x 256px; Figure 10). This is used

by svDetect to automatically cull the visual search space and

by svControl as an intersection complexity input feature.

3. A top-down abstract map image of the intersection

obtained from the GMaps API (Figure 13), which is used as a

training feature in our work scheduler, svControl, to infer
intersection complexity (like the depth data).

4. Associated intersection GIS metadata, also provided by the

GMaps API, such as latitude/longitude, GSV image age,

street and city names, and intersection topology.

svLabel: Human-Powered GSV Image Labeling

In Tohme, intersections are labeled either manually, via

svLabel, or automatically via svDetect. svLabel is a fully

interactive online tool written in Javascript and PHP for

finding and labeling curb ramps and missing curb ramps in

GSV images (Figures 5-7). Unlike much previous crowd-

sourcing GSV work, which uses static imagery to collect

labels [22–24], our labeling tool builds on Bus Stop CSI

[26] to provide a fully interactive 360 degree view of the

GSV panoramic image. While this freedom increases user-

interaction complexity, it allows the user to more naturally

explore the intersection and maintain spatial context while

searching for curb ramps. For example, the user can pan

Figure 5: Example curb ramp and missing curb ramp labels from our

turk studies. The green/pink outline points denote presence/absence.

C
ur

b
Ra

m
ps

M

is
si

ng
 C

ur
b

Ra
m

ps

Figure 4: A workflow diagram depicting Tohme’s four main sub-

systems. In summary, svDetect processes every GSV scene producing

curb ramp detections with confidence scores. svControl predicts

whether the scene/detections contain a false negative. If so, the

detections are discarded and the scene is fed to svLabel for manual

labeling. If not, the scene/detections are forwarded to svVerify for

verification. The workflow attempts to optimize accuracy and speed.

around the virtual 3D-space from one corner to the next

within an intersection.

Using svLabel. When a turker accepts our HIT, they are

immediately greeted by a three-stage interactive tutorial

(see supplementary video included with paper). The stages

progressively teach the turker about the interface (e.g., the

location of buttons and other widgets), user interactions

(e.g., how to label, zoom, and pan), and task concepts (e.g.,

the definition of a curb ramp). If mistakes are made, our

tutorial tool automatically provides corrective guidance.

Turkers must successfully complete one tutorial stage

before moving on to the next.

Once the tutorials are completed, we automatically position

the turker in one of the audit area intersections and the

labeling task begins in earnest. Similar to Bus Stop CSI

[26], svLabel has two primary modes of interaction:

Explorer Mode and Labeling Mode (Figure 6). When the

user first drops into a scene, s/he defaults into Explorer

Mode, which allows for exploration using Street View’s

native controls. Users are instructed to pan around to

explore the 360 degree view of the intersection and visual

feedback is provided to track their progress (bottom-right

corner of Figure 6). Note: users’ movement is restricted to

the drop location.

When the user clicks on either the Curb Ramp or Missing

Curb Ramp buttons, the interface switches automatically to

Labeling Mode. Here, mouse interactions no longer control

the camera view. Instead, the cursor changes to a pen,

allowing the user to draw an outline around the visual

target—a curb ramp or lack thereof (Figure 5). We chose to

have users outline the area rather than simply clicking or

The user clicks on either the Curb Ramp button or the Missing Curb Ramp button to enter the Labeling Mode. The mouse
cursor turns into a pen icon directing users to draw a label. In the Labeling Mode, the camera angle and location is fixed.
The interface automatically returns to Explore Mode after each label is drawn.

Figure 6: The svLabel interface. Crowd workers use the Explorer Mode to interactively explore the intersection (via pan and zoom) and switch to

the Labeling Mode to label curb ramps and missing curb ramps. Clicking the Submit button uploads the target labels. The turker is then

transported to a new location unless the HIT is complete.

Figure 7: svLabel automatically tracks the camera angle and repositions any applied labels in their correct location as the view changes. When the

turker pans the scene, the overlay on the map view is updated and the green “explored” area increases (bottom right of interface). Turkers can

zoom in up to two levels to inspect distant corners. Labels can be applied at any zoom level and are scaled appropriately.

The Explorer
Mode allows the
user to control
the GSV camera
angle.

(c) The user begins labeling the new corner in the zoomed view

The GSV pane is
the primary
interaction area
for exploring and
labeling.

If the user cannot
find anything to
label in the
scene, they can
click the Skip
button and
provide details
about their skip
reasoning.

The Status side
panel provides

details on the
user’s progress.

The user’s “view
direction” and

progress are
represented in

this top-down 2D
map view. The
observed area

and unobserved
area are overlaid
with green-and-
gray translucent

layers
respectively.

The user clicks
the Submit

button to upload
their labels

(a) After labeling one corner, the user pans to the right. (b) The user then zooms to get a closer look

drawing a bounding box because the detailed outlines

provide a higher degree of granularity for developing and

experimenting with our CV algorithms. Once an outline is

drawn, the user continues to search the intersection. Our

tool automatically tracks the camera angle and repositions

any applied labels in their correct location as the

intersection view changes. In this way, the labels appear to

“stick” to their associated targets. Once the user has

surveyed the entire intersection by panning 360 degrees,

s/he can submit the task and move on to the next task in the

HIT, until all tasks are complete.

Ground Truth Seeding. A single HIT is comprised of either

five or six intersections depending on whether it contains a

ground truth scene (a scene is just an intersection). This

“ground truth seeding” [40] approach is commonly used to

dynamically examine, provide feedback about, and improve

worker performance. In our case, if a user makes a mistake

at a ground truth scene, after hitting the submit button, we

provide visual feedback about the error and show the proper

corrective action (see video). The user must correct all

mistakes before submitting a ground truth task. If no

mistakes are detected, the user is congratulated for their

good performance. In our current system, there is a 50%

chance that a HIT will contain one ground truth scene. The

user is not able to tell whether they are working on a ground

truth scene until after they submit their work.

svVerify: Human-Powered GSV Label Verification

In addition to providing “curb ramp” and “missing curb

ramp” labels, we rely on crowd workers to examine and

verify the correctness of previously entered labels. This

verification step is common in crowdsourcing systems to

increase result quality (e.g., [24, 43]). svVerify (Figure 8) is

similar to svLabel in appearance and general workflow but

has a simplified interaction (clicking and panning only) and

is for an easier task (clicking on incorrect labels).

While we designed both svLabel and svVerify to maximize

worker efficiency and accuracy, our expectation was that

the verification task would be significantly faster than

initially providing manual labels [43]. For verification,

users need not perform a time-consuming visual search

looking for curb ramps to label but rather can quickly scan

for incorrect labels (false positives) to delete. And, unlike

labeling, which requires drawing polygonal outlines, the

delete interaction is a single click over the offending label

(similar to [46]). This enables users to rapidly eliminate

false positive labels in a scene.

To maintain verification efficiency, however, we did not

allow the user to spatially locate false negatives. This would

essentially turn the verification task into a labeling task, by

asking users to apply new “curb ramp” or “curb ramp

missing” labels when they noticed a valid location that had

not been labeled. Instead, svVerify gathers information on

false negatives at a coarser-grained level by asking the user

if the current scene was missing any labels after s/he clicks

the submit button. Thus, svVerify can detect the presence of

false negatives in an intersection but not their specific

location or quantity.

Similar to svLabel, svVerify requires turkers to complete an

interactive tutorial before beginning a HIT, which includes

instructions about the task, the interface itself, and

successfully verifying one intersection. Because

verifications are faster than providing labels, we included

10 scenes in each HIT (vs. the 5 or 6 in svLabel). In

addition, we inserted one ground truth scene into every

svVerify HIT rather than with 50% probability as was done

with svLabel. Note that not all scenes are sent to svVerify

for verification, as discussed in the svControl section

below. We move now to describing the two more technical

parts of Tohme: svDetect and svControl.

svDetect: Detecting Curb Ramps Automatically

While svLabel relies on manual labeling for finding curb

ramps, svDetect attempts to do this automatically using CV.

Because CV-based object detection is still an open

problem—even for well-studied targets such as cars [18]

and people [11]—our goal is to create a system that

functions well enough to reduce the cost of curb ramp

detection vs. a manual approach alone.

svDetect uses a three-stage detection process. First, we train

a Deformable Part Model (DPM) [18], one of the most

successful recent approaches in object detection (e.g., [15]),

as a first-pass curb ramp detector. Second, we post-process

the resulting bounding boxes using non-maximum

suppression [37] and 3D-point cloud data to eliminate

detector redundancies and false positives. Finally, the

remaining bounding boxes are classified using a Support

Vector Machine (SVM) [8], which uses features not

leveraged by the DPM, further eliminating false positives.

svDetect was designed and tested iteratively. We attempted

multiple algorithmic approaches and used preliminary

experiments to guide and refine our approach. For example,

we previously used a linear SVM with a Histograms of

Oriented Gradients (HOG) feature descriptor [27] but found

Figure 8: The svVerify interface is similar to svLabel but is designed

for verifying rather than labeling. When the mouse hovers over a

label, the cursor changes to a garbage can and a click removes the

label. The user must pan 360 degrees before submitting the task.

that the DPM was able to recognize curb ramps with larger

variations. In addition, we found that though the raw GSV

image size is 13,312 x 6,656 pixels, there were no detection

performance benefits beyond 4,096 x 2,048px (the

resolution used throughout this paper). Because it helps

explain our design rationale for Tohme, we include our

evaluation experiments for svDetect in this section rather

than later in the paper.

First Stage: The Curb Ramp Deformable Part Model (DPM)

DPMs are comprised of two parts: a coarse-grained model,

called a root filter, and a higher resolution parts model,

called a parts filter. DPMs are commonly applied to human

detection in images, which provides a useful example. For

human detection, the root filter captures the whole human

body while part filters are for individual body parts such as

the head, hand, and legs (see [17]). The individual parts are

learned automatically by the DPM—that is, they are not

explicitly defined a priori. In addition, how these parts can

be positioned around the body (the root filter) is also

learned and modeled via displacement costs. This allows a

DPM to recognize different configurations of the human

body (e.g., sitting vs. standing).

In our case, the root filter describes the general appearance

of a curb ramp while part filters account for individual

components (e.g., edges of the ramp and transitions to the

road). DPM creates multiple components for a single model

(Figure 9) based on bounding box aspect ratios. We suspect

that each component implicitly captures different

viewpoints of a curb ramp. For our DPM, we used code

provided by [20].

Second Stage: Post-Processing DPM Output

In the second stage, we post-process the DPM output in two

ways. First, similar to [37], we use non-maximum

suppression (NMS) to eliminate redundant bounding boxes.

NMS is common in CV and works by greedily selecting

bounding boxes with high confidence values and removing

overlapping boxes with lower scores. Overlap is defined as

the ratio of intersection of the two bounding boxes over the

union of those boxes. Based on the criteria established by

the PASCAL Visual Object Classes challenge [16], we set

our NMS overlap threshold to 50%.

Our second post-processing step uses the 3D-point cloud

data to eliminate curb ramp detections that occur above the

ground plane (e.g., bounding boxes in the sky are removed).

To do so, the 512 x 256px depth image is resized to the

GSV image size (4096 x 2048px) using bilinear

interpolation. For each pixel, we calculate a normal vector

and generate a mask for those pixels with a strong vertical

component. These pixels correspond to the ground plane.

Bounding boxes outside of this pixel mask are eliminated

(Figure 10 and 11).

Third Stage: SVM-Based Classification

Finally, in the third stage, the remaining bounding boxes

are fed into an additional classifier: an SVM. Because the

DPM relies solely on gradient features in an image, it does

not utilize other important discriminable information such

as color or position of the bounding box. Given that street

intersections have highly constrained geometrical

configurations, curb ramps tend to occur in similar

locations—so detection position is important. Thus, for

each bounding box, we create a feature vector that includes:

RGB color histograms, the top-left and bottom-right corner

coordinates of the bounding box in the GSV image along

with its width and height, and the detection confidence

score from the DPM detector. We use the SVM as a binary

classifier to keep or discard detection results from the

second stage.

svDetect Training and Results

Two of the three svDetect stages require training: the DPM

in Stage 1 and the SVM in Stage 3. For training and testing,

we used two-fold cross validation across the 1,086 GSV

scenes and 2,877 ground truth curb ramp labels. The GSV

scenes were randomly split in half (543 scenes per fold)

with one fold initially assigned for training and the other for

testing. This process was then repeated with the training

and testing folds switched.

To train the DPM (Stage 1), we transform the polygonal

ground truth labels into rectangular bounding boxes, which

are used as positive training examples. DPM uses a sliding

window approach, so the rest of the GSV scene is treated as

negative examples (i.e., comprised of negative windows).

For each image in the training set, the DPM produces a set

of bounding boxes with associated confidence scores. The

number of bounding boxes produced per scene is contingent

on a minimum score threshold. This threshold is often

learned empirically (e.g., [1]). A high threshold would

(a) Root filter (b) Parts filter (c) Displacement costs

Figure 9: The trained curb ramp DPM model. Each row represents

an automatically learned viewpoint variation. The root and parts

filter visualize learned weights for the gradient features. The

displacement costs for parts are shown in (c).

Figure 10: Using code from [39], we download GSV’s 3D-point cloud

data and use this to create a ground plane mask to post-process DPM

output. The 3D depth data is coarse: 512 x 256px.

produce a small number of bounding boxes, which would

likely result in high precision and low recall; a low

threshold would likely lead to low precision and high recall.

To train the SVM (Stage 3), we use the post-processed

DPM bounding boxes from Stage 2. The bounding boxes

are partitioned into positive and negative samples by

calculating area overlap with the ground truth labels.

Though there is no universal standard for evaluating “good

area overlap” in object detection research, we use 20%

overlap (from [19]). Prior work suggests that even 10-15%

overlap agreement at the pixel level would be sufficient to

confidently localize accessibility problems in images [24].

Thus, positive samples are boxes that overlap with ground

truth by more than 20%; negative samples are all other

boxes. We extract the aforementioned training features

from both the positive and negative bounding boxes. Note

that SVM parameters (e.g., coefficient for slack variables)

are automatically selected by grid search during training.

Results. To analyze svDetect’s overall performance and to

determine an appropriate confidence score cutoff for

svDetect, we stepped through various DPM detection

thresholds (from -3-to-3 with a 0.01 step) and measured the

results. For each threshold, we calculated true positive,

false positive, and false negative detections for each scene.

True positives were assessed as bounding boxes that had

20% overlap with ground truth labels and that had a

detection score higher than the currently set threshold. The

results are graphed on a precision-recall curve in Figure 12.

To balance the number of true positive detections and false

positives in our system, we selected a DPM detection

threshold of -0.99. At this threshold, svDetect generates an

average of 7.0 bounding boxes per intersection (SD=3.7);

see Figure 11 for examples. Note: svDetect failed to

generate a bounding box for 15 of the 1,086 intersections.

These are still included in our performance comparison.

In the ideal, our three-stage detection framework would

have both high precision and high recall. As can be

observed in Figure 12, this is obviously not the case as

~20% of the curb ramps are never detected (i.e., the recall

metric never breaches 80%). With that said, automatically

finding curb ramps using CV is a hard problem due to

viewpoint variation, illumination, and within/between class

variation. This is why Tohme combines automation with

manual labor using svControl.

svControl: Scheduling Work via Performance Prediction

svControl is a machine-learning module for predicting CV

performance and assigning work to either a manual labor

(a) Downtown DC (b) Residential Saskatchewan (c) Residential DC

Figure 11: Example results from svDetect’s three-stage curb ramp detection framework. Bounding boxes are colored by confidence score (lighter is

higher confidence). As this figure illustrates, setting the detection threshold to -0.99 results in a relatively low false negative rate at a cost of a high

false positive rate (false negatives are more expensive to correct). Many false positives are eliminated in Stages 2 and 3. The effect of Stage 2’s

ground plane mask is evident in (b). Acronyms: TP=true positive; FP=false positive; FN=false negative.

St
ag

e
1:

 D
P

M

St
ag

e
2:

 P
os

t-
P

ro
ce

ss
in

g
St

ag
e

3:
 S

V
M

TP=6; FP=4; FN=1

TP=6; FP=9; FN=1 TP=4; FP=17; FN=0

TP=4; FP=6; FN=0

TP=3; FP=1; FN=1

TP=4; FP=13; FN=0

TP=4; FP=11; FN=0

TP=4; FP=5; FN=0

TP=6; FP=6; FN=1

Figure 12: The precision-recall curve of the three-stage curb ramp

detection process constructed by stepping through various DPM

detection thresholds (from -3-to-3 with a 0.01 step). For the final

svDetect module, we selected a DPM detection threshold of -0.99,

which balances true positive detections with false positives.

svDetect’s final confidence
score threshold was set
to -0.99, which results in 67%
recall and 26% precision.

pipeline (svLabel) or an automated pipeline with human

verification (svDetect + svVerify)—see Figure 4. We

designed svControl based on three principles: first, that

human-based verifications are fast and relatively low-cost

compared to human-based labeling; second, CV is fast and

inexpensive but error prone both in producing high false

positives and false negatives; third, false negatives are more

expensive to correct than false positives.

From these principles, we derived two overarching design

questions: first, given the high cost of human labeling and

relative low-cost of human verification, could we optimize

CV performance with a bias towards a low false negative

rate (even if it meant an increase in false positives)?

Second, given that false negatives cannot be eliminated

completely from svDetect, can we predict their occurrence

based on features of an intersection and use this to divert

work to svLabel instead for human labeling?

Towards the first question, biasing CV performance

towards a certain rate of false negatives is trivial. It is

simply a matter of selecting the appropriate threshold on the

precision/recall curve (recall that the threshold that we

selected was -0.99). The second question is more complex.

We iterated over a number of prediction techniques and

intersection features before settling on a linear SVM and

Lasso regression model [44] with the following three types

of input features:

 svDetect results (16 features): For each GSV image, we

include the raw number of bounding boxes output from

svDetect, the average, median, standard deviation, and range

of confidence scores of all bounding boxes in the image, and

descriptive statistics for their XY-coordinates. Importantly, we

did not use the correctness of the bounding box as a feature

since this would be unknown during testing.

 Intersection complexity (2 features): We calculate

intersection complexity via two measures: cardinality (i.e.,

how many streets are connected to the target intersection) and

an indirect measure of complexity, for which we count the

number of street pixels in a stylized top-down Google Map.

We found that high pixel counts correlate to high intersection
complexity (Figure 13).

 3D-point cloud data (5 features): svDetect struggles to detect

curb ramps that are distant in a scene—e.g., because the

intersection is large or because the GSV car is in a sub-optimal

position to photograph the intersection. Thus, we include

descriptive statistics of depth information of each scene (e.g.,
average, median, variance).

We combine the above features into a single 23-

dimensional feature vector for training and classification.

svControl Training and Test Results

We train and test svControl with two-fold cross validation

using the same train and test data as used for svDetect.

Given that the goal of svControl is to predict svDetect

performance, namely the occurrence of false negatives, we

define a svDetect failure as a GSV scene with at least one

false negative curb ramp detection. The SVM model is

trained to make a binary failure prediction with the

aforementioned features. Similarly, the Lasso regression

model is trained to predict the raw number of false

negatives of svDetect (regression value > 0.5 is failure).

To help better understand the important features in our

models, we present the top three correlation coefficients for

both. For the SVM, the top coefficients were the label’s x-

coordinate variance (0.91), the mean confidence score of

automatically detected labels (0.69), and the minimum

scene depth (0.67). For the Lasso model, the top three were

mean scene depth (0.69), median scene depth (-0.28), and,

similar to the SVM, the mean confidence score of the

automatically detected labels (0.21). If either the SVM or

the Lasso model predicts failure on a particular GSV scene,

svControl routes that scene to svLabel instead of svVerify.

svControl Results. We assessed svControl’s prediction

performance across the 1,086 scenes. While not perfect, our

results show that svControl is capable of identifying

svDetect failures with high probability—we correctly

predicted 397 of the 439 svDetect failures (86.3%);

however, this high recall comes at a cost of precision: 404

of the total 801 scenes (50.4%) marked as failures were

false positives. Given that we designed svControl to be

conservative (i.e., pass more work to svLabel if in doubt

about svDetect), this accuracy balance is reasonable.

Below, we examine whether this is sufficient to provide

performance benefits for Tohme.

STUDY 2: EVALUATING TOHME

To examine the effectiveness of Tohme for finding curb

ramps in GSV images and to compare its performance to a

baseline approach, we performed an online study with

MTurk in spring 2014. Our goal here is threefold: first, and

most importantly, to investigate whether Tohme provides

performance benefits over manual labeling alone (baseline);

second, to understand the effectiveness of each of Tohme’s

sub-systems (svLabel, svVerify, svDetect, and svControl);

and third, to uncover directions for future work in

preparation for a public deployment.

Tohme Study Method

Similar to Hara et al. [24], we collected more data than

necessary in practice so that we could simulate performance

with different workflow configurations post hoc. To allow

Figure 13: We use top-down stylized Google Maps (bottom row) to

infer intersection complexity by counting black pixels (streets) in each

scene. A higher count correlates to higher complexity.

us to compare Tohme vs. feeding all scenes to either

workflow on their own (svLabel and svDetect+svVerify),

we ran all GSV scenes through both. To avoid interaction

effects, turkers hired for one workflow (labeling) could not

work on the other (verifying) and vice versa.

Second, to more rigorously assess Tohme and to reduce the

influence of any one turker on our results, we hired at least

three turkers per scene for each workflow and used this data

to perform Monte Carlo simulations. More specifically, for

both workflows, we randomly sampled one turker from

each scene, calculated performance statistics (e.g.,

precision), and repeated this process 1,000 times.

Admittedly, this is a more complex evaluation than simply

hiring one turker per scene and computing the results;

however, the Monte Carlo simulation allows us to derive a

more robust indicator of Tohme’s expected future

performance.

Of the 1,086 GSV scenes (street intersections) in our

dataset, we reserved 40 for ground truth seeding, which

were randomly selected from the eight geographic areas (5

scenes from each). We calculated HIT payment rates based

on MTurk pilot studies: $0.80 for svLabel HITs (five

intersections; $0.16 per intersection) and $0.80 for svVerify

(ten intersections; $0.08 per intersection). As noted in our

system description, turkers had to successfully complete

interactive tutorials before beginning the tasks.

Analysis Metrics

To assess Tohme, we used the following measures:

 Label overlap compared to ground truth: as described in

the svDetect section, we use 20% overlap as our correctness
threshold (from [24]).

 We calculate standard object detection performance

metrics including precision, recall, and F-measure based on
this 20% area overlap—the same overlap used by svDetect.

 Human time cost: cost is calculated by measuring completion

times for each intersection in svLabel and svVerify.

Tohme Study Results

We first present high-level descriptive statistics of the

MTurk HITs before focusing on the comparison between

Tohme vs. our baseline approach (pure manual labeling

with svLabel). We provide additional analyses that help

explain the underlying trends in our results.

Descriptive Statistics of MTurk Work

To gather data for our analyses, we hired 242 distinct

turkers for the svLabel pipeline and 161 turkers for the

svVerify pipeline (Table 3). As noted previously, all 1,046

GSV scenes were fed through both workflows. For svLabel,

turkers completed 1,270 HITs (6,350 labeling tasks)

providing 17,327 curb ramp labels and 3,462 missing curb

ramp labels. For svVerify, turkers completed 582 HITs

(5,820 verification tasks) and verified a total of 42,226 curb

ramp labels. On average, turkers eliminated 4.9 labels per

intersection (SD=2.9). We hired an average of 6.1 (SD=0.6)

turkers per intersection for svLabel and 5.6 (SD=0.6) for

svVerify.

Evaluating Tohme’s Performance

To evaluate Tohme’s overall performance, we first

examined how well each pipeline would perform on its own

across the entire dataset (1,046 scenes). This provides two

baselines for comparison: (i) the svDetect + svVerify results

show how well Tohme would perform if the svControl

module passed all work to this pipeline and, similarly, (ii)

the svLabel results show what would happen if we only

relied on manual labor for finding and labeling curb ramps.

We found that Tohme achieved similar but slightly lower

curb ramp detection results compared to the manual

approach alone (F-measure: 84% vs. 86%) but with a much

lower time cost (13% reduction); see Figure 14. As

 Turkers
GSV

Scenes
HITs Tasks

Avg. Turkers /
Intersection

Label Stats
Avg. Task

Time

SVLABEL 242 1,046 1,270 6,350 6.1 (0.6)
20,789 labels

(17,327CRs, 3,462MCRs)
94.1s (144.4s)

SVVERIFY 161 1,046 582 5,820 5.6 (0.6)
42,226 verified labels
(28,801RLs, 13,425KLs)

43.2 (48.7s)

Table 3: An overview of the MTurk svLabel and svVerify HITs.

While Tohme’s svControl system would, in practice, split work

between the svLabel and svDetect+svVerify pipelines, we fed every

GSV scene to both to perform our analyses. Acronyms above include

CRs=Curb Ramps; MCRs=Missing Curb Ramps; RLs=Removed

Labels; KLs=Kept Labels. svVerify was 2.2x faster than svLabel.

Figure 14: Tohme achieves comparable results to a manual labeling

approach alone but with a 13% reduction in time cost. Error bars are

standard deviation.

Curb Ramp Detections Results from Monte Carlo

Simulations (1,046 GSV Scenes)

Figure 15: svControl allocated 769 scenes to svLabel and 277 scenes

to svVerify. 379 out of 439 scenes (86.3%) where svDetect failed were

allocated “correctly” to svLabel. Recall that svControl is conservative

in routing work to svVerify because false negative labels are expensive

to correct; thus, the 86.3% comes at a high false positive cost (390).

This is work that could
have been routed to
svVerify but was sent to
svLabel (svControl is
overly conservative)

Low false negative rate
indicates tasks were
correctly routed

svControl Prediction Accuracy and Task Allocation

expected, while the svDetect + svVerify pipeline is

relatively inexpensive, it performed the worst (F-measure:

63%). These findings show that the svControl module

routed work appropriately to maintain high accuracy but at

a reduced cost. Tohme reduces the average per-scene

processing time by 12 seconds compared to svLabel alone.

The overall task completion times were 12.3, 27.3, and 23.7

hours for svDetect + svVerify, svLabel, and Tohme

respectively.

The above results were calculated using the aforementioned

Monte Carlo method. If we, instead, use only the first turker

to arrive and complete the task, our results are largely the

same. The F-measures are 63%, 86%, and 85% respectively

for svDetect + svVerify, svLabel, and Tohme with a 10%

drop in cost for Tohme (rather than 13%). This includes 65

distinct turkers for svDetect + svVerify, 97 for svLabel, and

149 for Tohme.

Task Allocation by svControl

As the workflow scheduler, the svControl module is a

critical component of Tohme. Because the svVerify

interface does not allow for labeling (e.g., correcting false

negatives), the svControl system is conservative—it routes

most of the work to svLabel otherwise many curb ramps

would possibly remain undetected. Of the 1,046 scenes,

svControl predicted svDetect to fail on 769 scenes (these

results are the same as presented in the svControl section

but with the 40 ground truth scenes removed). Thus, 73.5%

of all scenes were routed to svLabel for manual work and

the rest (277) were fed to svVerify for human verification

(Figure 15). Again, svControl’s true positive rate is high:

86%. However, if svControl worked as a perfect classifier,

439 scenes would have been forwarded to svLabel and 607

to svVerify. In this idealized case, Tohme’s cost drops to

27.7% compared to a manual labeling approach with the

same F-measure as before (84%). Thus, assuming limited

improvements in CV-based curb ramp detections in the near

future, a key area for future work will be improving the

workflow control system.

Where Humans and Computers Struggle

The key to improving both CV and human labeling

performance is to understand where and why each sub-

system makes mistakes. To assess the detection accuracy of

human labelers, we calculated the average F-measure score

per scene based on the average number of true positives

(TP), false positives (FP), and false negatives (FN). For

example, if the average for a scene was (TP, FP, FN) = (1,

1, 2), then (Precision, Recall, F-measure) = (0.5, 0.3, 0.4).

For CV, we simply used the F-measure score for each scene

based on our svDetect results. We sorted the two F-measure

lists and visually inspected the best and worst performing

scenes for each. For the top and bottom 10, the average F-

measure scores were 99% and 0% for CV and 100% and

25% for human labeling respectively. Common problems

are summarized in Figure 16.

Crowd workers struggled with labeling distant curb ramps

(scale) or due to placement and angle (viewpoint variation).

To mitigate this, future labeling interfaces could allow the

worker to “walk” around the intersection to select better

viewpoints (similar to [26]); however, this will increase

user-interaction complexity and labeling time. Perhaps as

should be expected, crowd workers were much more adept

at dealing with occlusion than CV—even if a majority of a

curb ramp was occluded, a worker could infer its location

and shape (e.g., middle occlusion picture). CV struggled for

all the reasons noted in Figure 16. Given the tremendous

variation in curb ramp design and capture angles, a larger

training set may have improved our results. Moreover,

because multiple views of a single intersection are available

Figure 16: Finding curb ramps in GSV imagery can be difficult. Common problems include occlusion, illumination, scale differences because of

distance, viewpoint variation (side, front, back), between class similarity, and within class variation. For between class similarity, many structures

exist in the physical world that appear similar to curb ramps but are not. For within class variation, there are a wide variety of curb ramp designs

that vary in appearance. White arrows are used in some images to draw attention to curb ramps. Some images contain multiple problems.

Occlusion Illumination

Scale Viewpoint Variation

Structures Similar to Curb Ramps Curb Ramp Design Variation

in GSV via neighboring panoramas, these additional

perspectives could be combined to potentially improve

scene structure understanding and mitigate issues with

occlusion, illumination, scale, and viewpoint variation. The

semantic issues—e.g., confusing structures similar to curb

ramps—are obviously much more difficult for CV than

humans. We describe other areas for improvement in the

Discussion.

Effect of Area Overlap Threshold on Performance

As noted previously, there is no universal standard for

selecting an area overlap threshold in CV; this decision is

often domain dependent. To investigate the effect of

changing the overlap threshold on performance, we

measured precision, recall, and F-measure at different

values from 0-50% at a step size of 10% (Figure 17). For

overlap=0%, at least 1px of a detected bounding must

overlap with a ground truth label to be considered correct.

A few observations: first, as expected, performance

decreases as the overlap threshold increases; however, the

relative performance difference between Tohme and

baseline (svLabel) stays roughly the same. For example, at

0% overlap, the (Precision, Recall, F-measure) of Tohme is

(85%, 89%, 87%) and (86%, 90%, 88%) for svLabel and at

50% overlap, (54%, 55%, 55%) vs. (57%, 59%, 58%).

Thus, Tohme’s relative performance is consistent regardless

of overlap threshold (i.e., slightly poorer performance but

cheaper). Second, there appears to be a more substantial

performance drop starting at ~30%, which suggests that

obtaining curb ramp label agreement at the pixel level

between human labelers and ground truth after this point is

difficult. Finally, though svDetect + svVerify has much

greater precision than svDetect alone, this increase comes at

a cost of recall—a gap which widens as the overlap

threshold becomes more aggressive. So, though human

verifiers help increase precision, they are imperfect and

sometimes delete true positive labels.

DISCUSSION

Our research advances recent work using GSV and

crowdsourcing to remotely collect data on accessibility

features of the physical world (e.g., [22–24, 26]) by

integrating CV and a machine learning-based workflow

scheduler. We showed that a trained CV-based curb ramp

detector (svDetect) found 63% of curb ramps in GSV

scenes and fast, human-based verifications further

improved the overall results. We also demonstrated that a

novel machine-learning based workflow controller,

svControl, could predict CV performance and route work

accordingly. Below, we discuss limitations and

opportunities for future work.

Improving Human Interfaces

How much context is necessary for verification? We were

surprised that verification tasks were only 2.2x faster than

labeling tasks. Though we attempted to design both

interfaces for rapid user interaction, there is some basic

overhead incurred by panning and searching in the 360-

degree GSV view. In an attempt to eliminate this overhead,

we have designed a completely new type of verification

interface, quickVerify, that simply presents detected

bounding boxes in a grid view (Figure 18). Similar to the

facial recognition verifier in Google Picasa, these boxes can

be rapidly confirmed or rejected with a single-click and a

new bounding box appears in its place. In a preliminary

experiment using 160 GSV scenes and 59 distinct turkers,

however, we found that accuracy with quickVerify dropped

significantly. Unlike faces, we believe that curb ramps

require some level of surrounding context to accurately

perceive their existence. More work is needed to determine

the appropriate amount of surrounding view context to

balance speed and accuracy.

Improving human labeling. Human labeling time could be

reduced if point-and-click interactions were used for

labeling targets rather than outlining; however, as

demonstrated in Figure 16, curb ramps vary dramatically in

size, scale, and shape. Clicking alone would be insufficient

for CV training. Moreover, labeling will always be more

costly than verification because it is a more difficult task

(i.e., finding elements in an image requires visual search

and a higher mental load). With that said, we currently

discard all svDetect bounding boxes—even those with a

high confidence score—when a scene is routed to svLabel.

Future work should explore how to, instead, best utilize this

CV data to improve worker performance (e.g., by showing

Figure 18: In the quickVerify interface, workers could randomly

verify CV curb ramp detection patches. After providing an answer

for a given detection, the patch would “explode” (bottom left) and a

new one would load in its place. Though fast, verification accuracies

went down in an experiment of 160 GSV scenes and 59 turkers.

Figure 17: As expected, performance drops as the area overlap

threshold increases; however, the relative difference between Tohme

and baseline (svLabel) remains consistent.

Area Overlap Amount

detected bounding boxes with high scores to the user or as a

way to help verify human labels). Finally, similar to

quickVerify, future work could explore GSV panorama

labeling that is not projected onto a 3D-sphere but is instead

flattened into a 2D zoomable interface (e.g., [33]) or

specially rendered to increase focus on intersection corners.

Improving Automated Approaches

As the first work in automatically detecting curb ramps

using CV, there are no prior systems with which to directly

compare our performance. Having said that, there is much

room for improvement and advances in CV will only

increase the overall efficacy of our system.

Improving CV-based curb ramp detection. We are

currently exploring three areas of future work: (i) Context

integration. While we use some context information in

Tohme (e.g., 3D-depth data, intersection complexity

inference), we are exploring methods to include broader

contextual cues about buildings, traffic signal poles,

crosswalks, and pedestrians as well as the precise location

of corners from top-down map imagery. (ii) 3D-data

integration. Due to low-resolution and noise, we currently

use 3D-point cloud data as a ground plane mask rather than

as a feature to our CV algorithms. We plan to explore

approaches that combine the 3D and 2D imagery to

increase scene structure understanding (e.g., [28]). If higher

resolution depth data becomes available, this may be useful

to directly detect the presence of a curb or corner, which

would likely improve our results. (iii) Training. Our CV

algorithms are currently trained using GSV scenes from all

eight city regions in our dataset. Given the variation in curb

ramp appearance across geographic areas, we expect that

performance could be improved if we trained and tested per

city. However, in preliminary experiments, we found no

difference in performance. We suspect that this is due to the

decreased training set size. In the future, we would like to

perform training experiments to study the effects of per-city

training and to identify minimal training set size. Relatedly,

we plan to explore active learning approaches where crowd

labels train the system over time.

Improving the workflow controller. While our current

workflow controller focuses on predicting CV performance,

future systems should explore modeling and predicting

human worker performance and adapting work assignments

accordingly. For example, struggling workers could be fed

scenes that are predicted to be easy, or hard scenes can be

assigned to more than one worker to take majority vote [10,

31]. Similar to CV detection, per-city training and active

learning should also be explored.

Who pays? The question of who will pay for data collection

(or if payment is even necessary) in the future is an

important, unresolved one. Our immediate plans are to

build an open website where anyone can contribute

voluntarily. From conversations with motor impaired (MI)

persons and the accessibility community as a whole (e.g.,

non-profit organizations, families of those with MI), we

believe there is a strong demand for this system. For

example, with a public version of Tohme, a concerned,

motivated father could easily label over 100 intersections in

his neighborhood in a few hours. A website akin to

walkscore.com could then visualize the accessibility of that

neighborhood using heatmaps and also calculate accessible

pedestrian routes.

Limitations

There are two primary limitations to our work. First, there

is a workload imbalance between svLabel and svDetect.

svLabel gathers explicit data on both curb ramps and

missing curb ramps while svDetect only detects the former.

It is likely that if the svLabel task involved only labeling

curb ramps, the labeling task completion time would go

down, which would affect our primary results. And, while

the lack of a detected curb ramp could be equated to a

missing curb ramp label for svDetect, we have not yet

performed this analysis. Clearly, more explorations are

needed here but we believe our initial examinations are

sufficient to show the potential of Tohme.

Second, there is no assessment of how our curb ramp

detection results compare to traditional auditing approaches

(e.g., performed by city governments). Anecdotally, we

have found many errors in the DC government curb ramp

dataset [12]; however, more research is necessary to

uncover whether our approach is faster, cheaper, and/or

more accurate. Ultimately, Tohme must produce

sufficiently good data to enable new types of accessibility-

aware GIS applications (e.g., pedestrian directions routed

through an accessible sidewalk path).

CONCLUSION

This paper contributes the design and evaluation of a new

tool, Tohme, for semi-automatically detecting curb ramps

in GSV images using crowdsourcing, computer vision, and

machine learning. To our knowledge, we are the first work

to design and investigate CV algorithms for curb ramp

detection, an important sidewalk accessibility attribute. We

are also the first to combine crowdsourcing with automated

methods for collecting accessibility information about the

physical world in GSV scenes. Tohme’s custom workflow

controller predicts CV performance and routes work

accordingly to balance accuracy and human labor. Through

an MTurk study of 1,086 intersections across four North

American cities, we showed that Tohme could provide

comparable curb ramp detection accuracy at a 13%

reduction in cost. As computer vision and machine learning

algorithms continue to improve, Tohme should only

become more efficient.

While this paper focuses specifically on curb ramps, we

believe a similar approach could be applied to analyze the

accessibility of external building facades (e.g., the presence

of stairways), the safety of intersections (e.g., the presence

of painted cross walks), or even the accessibility of store

aisles as mapping companies increasingly focus on the

indoors (e.g., [21]).

REFERENCES
[1] 311 Online http://311.dc.gov/: .

[2] 3rd Circuit, C. of A. 1993. Kinney v. Yerusalim, 1993 No.

93-1168.

[3] Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S.,

Lyon, R., Ogale, A., Vincent, L. and Weaver, J. 2010.

Google Street View: Capturing the World at Street Level.

Computer. 43, 6 (Jun. 2010), 32–38.

[4] Badland, H.M., Opit, S., Witten, K., Kearns, R.A. and

Mavoa, S. 2010. Can virtual streetscape audits reliably

replace physical streetscape audits? Journal of urban

health : bulletin of the New York Academy of Medicine.

87, 6 (Dec. 2010), 1007–16.

[5] Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A.,

Miller, R.C., Miller, R., Tatarowicz, A., White, B.,

White, S. and Yeh, T. 2010. VizWiz: nearly real-time

answers to visual questions. Proceedings of the 23nd

annual ACM symposium on User interface software and

technology (New York, NY, USA, 2010), 333–342.

[6] Bigham, J.P., Ladner, R.E. and Borodin, Y. 2011. The

design of human-powered access technology. The

proceedings of the 13th international ACM SIGACCESS

conference on Computers and accessibility (ASSETS ’11)

(New York, NY, USA, 2011), 3–10.

[7] Branson, S., Wah, C., Babenko, B., Schroff, F., Welinder,

P., Perona, P. and Belongie, S. 2010. Visual Recognition

with Humans in the Loop. European Conference on

Computer Vision (ECCV) (Heraklion, Crete, 2010).

[8] Burges, C.C. 1998. A Tutorial on Support Vector

Machines for Pattern Recognition. Data Mining and

Knowledge Discovery. 2, 2 (1998), 121–167.

[9] Clarke, P., Ailshire, J., Melendez, R., Bader, M. and

Morenoff, J. 2010. Using Google Earth to conduct a

neighborhood audit: reliability of a virtual audit

instrument. Health & place. 16, 6 (Nov. 2010), 1224–9.

[10] Dai, P., Mausam and Weld, D.S. 2011. Artificial

Intelligence for Artificial Artificial Intelligence. AAAI

(2011).

[11] Dalal, N. and Triggs, B. 2005. Histograms of oriented

gradients for human detection. IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2005. CVPR 2005. (2005), 886–893 vol. 1.

[12] Data Catalog http://data.dc.gov/: .

[13] Dean, T., Ruzon, M.A., Segal, M., Shlens, J.,

Vijayanarasimhan, S. and Yagnik, J. 2013. Fast, Accurate

Detection of 100,000 Object Classes on a Single

Machine. 2013 {IEEE} Conference on Computer Vision

and Pattern Recognition ({CVPR)} (Jun. 2013), 1814–

1821.

[14] Deng, J., Russakovsky, O., Krause, J., Bernstein, M.,

Berg, A. and Fei-Fei, L. 2014. Scalable Multi-label

Annotation. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’14) (2014),

TBD.

[15] Everingham, M., Van~Gool, L., Williams, C.K.I., Winn,

J. and Zisserman, A. The {PASCAL} {V}isual {O}bject

{C}lasses {C}hallenge 2012 {(VOC2012)} {R}esults.

[16] Everingham, M., Van~Gool, L., Williams, C.K.I., Winn,

J. and Zisserman, A. 2010. The Pascal Visual Object

Classes (VOC) Challenge. International Journal of

Computer Vision. 88, 2 (Jun. 2010), 303–338.

[17] Felzenszwalb, P., McAllester, D. and Ramaman, D. 2008.

A Discriminatively Trained, Multiscale, Deformable Part

Model. CVPR (2008).

[18] Felzenszwalb, P.F., Girshick, R.B., McAllester, D. and

Ramanan, D. 2010. Object Detection with

Discriminatively Trained Part-Based Models. Pattern

Analysis and Machine Intelligence, IEEE Transactions

on. 32, 9 (Sep. 2010), 1627–1645.

[19] Ferrari, V., Fevrier, L., Jurie, F. and Schmid, C. 2008.

Groups of Adjacent Contour Segments for Object

Detection. Pattern Analysis and Machine Intelligence,

IEEE Transactions on. 30, 1 (Jan. 2008), 36–51.

[20] Girshick, R.B., Felzenszwalb, P.F. and McAllester, D.

Discriminatively Trained Deformable Part Models,

Release 5.

[21] Google Maps Business View:

http://www.google.com/maps/about/partners/businessvie

w/. Accessed: 2014-04-15.

[22] Guy, R. and Truong, K. 2012. CrossingGuard: exploring

information content in navigation aids for visually

impaired pedestrians. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI ’12) (New York, NY, USA, 2012), 405–414.

[23] Hara, K., Le, V. and Froehlich, J. 2012. A Feasibility

Study of Crowdsourcing and Google Street View to

Determine Sidewalk Accessibility. Proceedings of the

14th international ACM SIGACCESS conference on

Computers and accessibility (ASSETS ’12), Poster

Session (New York, NY, USA, 2012), 273–274.

[24] Hara, K., Le, V. and Froehlich, J. 2013. Combining

Crowdsourcing and Google Street View to Identify

Street-level Accessibility Problems. Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI ’13) (New York, NY, USA, May 2013),

631–640.

[25] Hara, K., Le, V., Sun, J., Jacobs, D. and Froehlich, J.

2013. Exploring Early Solutions for Automatically

Identifying Inaccessible Sidewalks in the Physical World

Using Google Street View. Human Computer Interaction

Consortium (2013).

[26] Hara, K., Shiri, A., Campbell, M., Cynthia, B., Le, V.,

Pannella, S., Moore, R., Minckler, K., Ng, R. and

Froehlich, J. 2013. Improving Public Transit

Accessibility for Blind Riders by Crowdsourcing Bus

Stop Landmark Locations with Google Street View.

Proceedings of the 15th International ACM SIGACCESS

Conference on Computers and Accessibility Technology

(2013), 16:1–16:8.

[27] Hara, K., Sun, J., Chazan, J., Jacobs, D. and Froehlich, J.

2013. An Initial Study of Automatic Curb Ramp

Detection with Crowdsourced Verification using Google

Street View Images. Proceedings of the 1st Conference

on Human Computation and Crowdsourcing

(HCOMP’13), Work-in-Progress (2013).

[28] Hoiem, D., Efros, A. and Hebert, M. 2008. Putting

Objects in Perspective. International Journal of

Computer Vision. 80, 1 (2008), 3–15.

[29] Hruschka, D.J., Schwartz, D., St.John, D.C., Picone-

Decaro, E., Jenkins, R.A. and Carey, J.W. 2004.

Reliability in Coding Open-Ended Data: Lessons Learned

from HIV Behavioral Research. Field Methods . 16 , 3

(Aug. 2004), 307–331.

[30] Jain, S.D. and Grauman, K. 2013. Predicting Sufficient

Annotation Strength for Interactive Foreground

Segmentation. ICCV (2013), 1313–1320.

[31] Kamar, E., Hacker, S. and Horvitz, E. 2012. Combining

Human and Machine Intelligence in Large-scale

Crowdsourcing. Proceedings of the 11th International

Conference on Autonomous Agents and Multiagent

Systems - Volume 1 (Richland, SC, 2012), 467–474.

[32] Kirschbaum, J.B., Axelson, P.W., Longmuir, P.E.,

Mispagel, K.M., Stein, J.A. and Yamada, D.A. 2001.

Designing Sidewalks and Trails for Access, Part II of II:

Best Practices Design Guide, Chapter 7.

[33] Kopf, J., Chen, B., Szeliski, R. and Cohen, M. 2010.

Street Slide: Browsing Street Level Imagery. ACM

Transactions on Graphics (Proceedings of SIGGRAPH

2010). 29, 4 (2010), 96:1 – 96:8.

[34] Krippendorff, K.H. 2003. Content Analysis: An

Introduction to Its Methodology. Sage Publications, Inc.

[35] Lasecki, W., Miller, C., Sadilek, A., Abumoussa, A.,

Borrello, D., Kushalnagar, R. and Bigham, J. 2012. Real-

time captioning by groups of non-experts. Proceedings of

the 25th annual ACM symposium on User interface

software and technology (New York, NY, USA, 2012),

23–34.

[36] Lin, C.H., Daniel, M. and Weld, S. 2012. Dynamically

switching between synergistic workflows for

crowdsourcing. In Proceedings of the 26th AAAI

Conference on Artificial Intelligence, AAAI ’12 (2012).

[37] Malisiewicz, T., Gupta, A. and Efros, A.A. 2011.

Ensemble of Exemplar-SVMs for Object Detection and

Beyond. ICCV (2011).

[38] National Council on Disability 2007. The Impact of the

Americans with Disabilities Act: Assessing the Progress

Toward Achieving the Goals of the ADA.

[39] Princeton Vision Toolkit:

http://vision.princeton.edu/code.html. Accessed: 2014-

04-07.

[40] Quinn, A.J. and Bederson, B.B. 2011. Human

Computation: A Survey and Taxonomy of a Growing

Field. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (New York, NY, USA,

2011), 1403–1412.

[41] Rundle, A.G., Bader, M.D.M., Richards, C.A.,

Neckerman, K.M. and Teitler, J.O. 2011. Using Google

Street View to audit neighborhood environments.

American journal of preventive medicine. 40, 1 (Jan.

2011), 94–100.

[42] Stollof, E.R. and Barlow, J.M. 2008. Pedestrian Mobility

and Safety Audit Guide.

[43] Su, H., Deng, J. and Fei-Fei, L. 2012. Crowdsourcing

Annotations for Visual Object Detection. AAAI Technical

Report, 4th Human Computation Workshop (2012).

[44] Tibshirani, R. 1994. Regression Shrinkage and Selection

Via the Lasso. Journal of the Royal Statistical Society,

Series B. 58, (1994), 267–288.

[45] United States Department of Justice, C.R.D. 1990.

Americans with Disabilities Act of 1990, Pub. L. No. 101-

336, 104 Stat. 328.

[46] Viola, P. and Jones, M. 2001. Rapid Object Detection

using a Boosted Cascade of Simple Features. Computer

Vision and Pattern Recognition, IEEE Computer Society

Conference on. 1, (2001), 511.

[47] Walk Audit:

http://streetswiki.wikispaces.com/Walk+Audit. Accessed:

2014-04-15.

[48] Welinder, P. and Perona, P. 2010. Online crowdsourcing:

rating annotators and obtaining cost-effective labels. In

W. on Advancing Computer Vision with Humans in the

Loop (2010).

[49] Xiao, J., Fang, T., Tan, P., Zhao, P., Ofek, E. and Quan,

L. 2008. Image-based Fa\ÇAde Modeling. ACM Trans.

Graph. 27, 5 (Dec. 2008), 161:1–161:10.

[50] Xiao, J., Fang, T., Zhao, P., Lhuillier, M. and Quan, L.

2009. Image-based Street-side City Modeling. ACM

Trans. Graph. 28, 5 (Dec. 2009), 114:1–114:12.

[51] Zamir, A.R., Darino, A. and Shah, M. 2011. Street View

Challenge: Identification of Commercial Entities in Street

View Imagery. ICMLA (2) (2011), 380–383.

[52] Zamir, A.R., Dehghan, A. and Shah, M. 2012. GMCP-

Tracker: Global Multi-object Tracking Using Generalized

Minimum Clique Graphs. ECCV (2) (2012), 343–356.

[53] Zamir, A.R. and Shah, M. 2010. Accurate Image

Localization Based on Google Maps Street View.

Proceedings of the European Conference on Computer

Vision (ECCV) (2010).

