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Abstract 
Poorly maintained sidewalks, missing curb ramps, and other 
obstacles pose considerable accessibility challenges. 
Although pedestrian- and bicycle-oriented maps and 
associated routing algorithms continue to improve, there has 
been a lack of work focusing on accessibility. There is 
currently no way for a user to determine accessible areas of 
a city prior to travel. In this paper, we explore the use of 
computer vision techniques (a linear SVM) to detect 
sidewalk accessibility problems in Google Street View 
imagery. This is early work in a large on-going project. 
Here, we focus on automatically identifying one key 
accessibility barrier: the presence/absence of curb ramps. 
Our preliminary results point to the potential of using 
automatic, highly-scalable approaches to extract information 
about physical accessibility from online map imagery.  

Introduction  
The lack of street-level accessibility information can have 
a significant negative impact on the independence and 
mobility of citizens (Nuernberger 2008; Thapar et al. 
2004). Although maintenance issues such as buckled or 
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cracked sidewalks can pose significant accessibility 
challenges so too do larger, more permanent infrastructural 
issues such as utility poles or fire hydrants directly in 
sidewalk paths or the lack of curb ramps at intersections. 
The problem is not just that sidewalks remain inaccessible, 
but also that there are no mechanisms to determine 
accessible areas of a city before travel. 
 In our previous work, we investigated whether crowd 
workers (turkers) recruited from Amazon Mechanical Turk 
(AMT) could locate, categorize, and assess sidewalk 
accessibility problems in a manually curated set of GSV 
images (Hara, Le, and Froehlich 2013). With simple 
quality control methods, we found that turkers were were 
able to identify sidewalk accessibility problems with an 
accuracy of 93%. However, crowd sourcing is, by nature, 
labor intensive. Here, we focus on investigating automated 
methods to improve the scalability and efficiency of our 
approach (see Figure 1 and 2).  
 We expect that computer vision and machine learning 
can be used in a variety of ways including (i) triage: 
automatically scanning large map regions for potential 
accessibility problems and utilizing crowdsourcing for 
verification; (ii) view selection: automatically identifying 
the most appropriate view to show crowdworkers 
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Figure 1: In this paper, we perform an early exploration of applying computer vision techniques to automatically identify sidewalk 
accessibility attributes in Google Street View (GSV). Specifically, we explore the automatic identification of the presence/absence of curb 
ramps (or “curb cuts”). We manually trained our classification/detection algorithm with positive training examples (green outlines above) 
and negative training example (red outlines) from GSV images.  



unobscured by cars or other occlusions; (iii) mensuration: 
it’s difficult to ascertain distance and measurement 
properties in a GSV scene—computer vision can help 
determine key attributes such as a width of a sidewalk.    

In this boaster, we focus on point (i) above: in particular, 
exploring a simple, automated approach to detecting the 
presence/absence of curb ramps in GSV images.  

Related Work 
Our research is related to four threads of prior work: 
machine learning-based object detection; the application of 
computer vision in the domain of assistive technologies; 
the use of omnidirectional street-level images as a 
datasource; and the use of crowdsourcing for accessibility. 
We briefly describe each in turn.  
 The sliding window approach for object detection, 
which we employ here, is widely used in computer vision 
(Dalal and Triggs 2005; Liu et al. 2012; Rowley, Baluja, 
and Kanade 1996). Rowley et al. introduced this technique 
to detect human faces by classifying whether a small 
window that is moved over an image (thus a “sliding 
window”) contains a face. Liu et al. used a similar 
approach for identifying a dog breed by detecting a face 
and also face parts of a dog. Dalal and Trigg used it for 
detecting pedestrians in city scenes. In this paper, we use 
this approach to detect curb ramps in images of street 
intersections collected from GSV.  
 Applications of computer vision-based object detection 
algorithms in the accessibility domain are primarily aimed 
at supporting people with visual impairments (Lee, Leung, 
and Medioni 2012; Ivanchenko, Coughlan, and Shen 2009; 
Vázquez and Steinfeld 2012). For example, Lee et al. built 
a real-time staircase detector to support low-vision or blind 
people. Similarly, Ivanchenko et al. developed a crosswalk 
detector to help blind users appropriately navigate 
crosswalks. Vázquez and Steinfeld developed a mobile 
application that suggests a better picture composition to 

support blind users to take a better picture. Although 
related, our approach is different; we are using GSV 
imagery for offline detection of sidewalk accessibility 
attributes—in particular curb ramps—to build a database 
that can be used for accessibility-aware routing algorithms. 
 The use of GSV in computer vision has also become 
increasingly popular although not in the context of 
accessibility (e.g., Doersch et al. 2012; Xiao and Quan 
2009; Zamir and Shah 2010). Xiao et al. used GSV 
imagery as dataset to investigated novel techniques of 
multiple-view image segmentation; Zamir and Shah 
developed an algorithm to match user-generated images 
and GSV images to localize where user-generated images 
were taken; Doersch used GSV images to extract 
geographically informative elements of different cities 
(e.g., shape of a window in Paris, iron railing in London), 
potentially useful for computational geography. However, 
to our knowledge, nobody has worked on detecting 
sidewalk accessibility attributes in GSV imagery.  
 Although computer vision techniques continue to 
improve, it is unlikely that a purely automated approach 
will achieve a sufficiently high level of accuracy to create a 
useful system. Thus, we expect that any solution will likely 
incorporate manual annotations or corrections from human 
users as well. With the advent of the Internet and the 
emergence of crowdsourcing labor markets (e.g., 
Mechanical Turk), there has been an increase of 
crowdsourcing for accessibility (Bigham, Ladner, and 
Borodin 2011). For example Lasecki et al. developed a 
real-time captioning algorithm that harness human-power 
to achieve high-quality video captioning (Lasecki et al. 
2012). Most relevant to this boaster is our past work! 
utilizing crowdsourcing and GSV (i) to identify sidewalk 
accessibility problems to support people with mobility 
impairments (Hara, Le, and Froehlich 2012; Hara, Le, and 
Froehlich 2013) and (ii) to find bus stop landmarks to help 
blind people locate bus stops (Hara et al. 2013).   

Dataset and Study Method 
To train an automatic curb ramp detector, we collected 
images of intersections in Washington DC from GSV. We 
used a linear Support Vector Machine (SVM) classifier 
trained with Histogram of Oriented Gradient (HOG) 
features and evaluated its classification performance.  

Collecting Curb Ramp Image Patches 
We manually collected 73 GSV images with visible curb 
ramps from intersection in Washington DC (Figure 2a). In 
each image, one member of the research team drew an 
outline around curb ramps to create mask images (Figure 
2b). We cropped a rectangular image patch from each GSV 
image so the outlined area fit in an image patch (Figure 
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Figure 2: (a) The original GSV image; (b) A curb ramp mask 
provided by a member of the research team; (c) Masked parts of 
the original image are cropped; (d) The cropped image patches are 
resized to 82x40 pixel. 



2c). We measured the median width and median height of 
cropped image patches, and reshaped all of them to fit to 
that dimension (window size=82x40 pixel) (Figure 2d). 
Using this method, we obtained 109 curb ramp image 
patches across the 73 GSV images. Similarly, we randomly 
cropped 1,090 image patches that do not contain curb 
ramps from the same GSV images.  

Curb Ramp Classifier 
To build a curb ramp classifier, we used a linear Support 
Vector Machine (SVM) implemented in SVM-light 
(Joachims 1999)—a well-known SVM library—with the 
commonly used HOG feature descriptor implemented in 
VLFeat (Vedaldi and Fulkerson 2008). Training a classifier 
is a two-step process: we extract a set of features (feature 
vector) from an image patch and label it as a positive (+1) 
or a negative (-1); we then feed a set of pairs of a label and 
a feature vector into a training algorithm.  
 We extracted HOG feature vectors from manually-
labeled positive and negative curb ramp image patches. To 
obtain a HOG feature vector from an image patch, we first 
calculate a gradient vector—a pair of values that describe 
how pixel color intensity changes along x- and y-axis—at 
each pixel on the image patch. We split the image patch 
into 10x5=50 small subsections (“cells”) of 8x8=64 pixels. 
This is one of the cell sizes that is used in Dalal’s original 
work that introduced the HOG (Dalal and Triggs 2005). In 
each cell, we count a number of gradient vectors within 
ranges of angles. We discretized gradient vector angles by 
11.6 degrees to split them into 31 bins (31x11.6=360). This 
produces a gradient histogram. Note: 11.6 degrees is a 
default setting in VLFeat. We concatenate gradient 
histograms from all of 50 cells and obtain 1,550-dimension 
(31x50) feature vector for each image patch. A feature 
vector that contains a curb ramp image patch is labeled +1 
while a feature vector that contains no curb ramp image 
patches is labeled as -1. We use these labels and associated 
vectors as positive and negative training examples.  
 We train a SVM classification model implemented in 
SVM-light. We used 87 out of 109 positive examples and 
870 out of 1090 negative examples to train the classifier. 
We used the remaining 22 positive examples and 220 
negative examples for testing. 

Curb Ramp Detector 
We use the curb ramp classifier we obtained to implement 
a sliding window curb ramp detector, which is a three-step 
process: First, we crop an image patch from the top-left 
corner of an image with a 82x40 pixel window. Then we 
use the trained classifier to classify if the cropped image 
patch is a curb ramp or not. To do this, we move the 
window to the left for one pixel and continue the process 
until we reach the bottom-right corner. Because 

consecutive windows with visible curb ramps will likely be 
classified as curb ramps, we cluster detected points that are 
close to each other with a mean shift clustering—a  
clustering algorithm that does not require a number of 
clusters before runtime.  

ROC Curve and Area Under the Curve 
We used two common measures used in computer vision to 
evaluate the performance of our curb ramp classification:  
the Receiver Operating Characteristic (ROC) curve and the 
Area Under the Curve (AUC) measure. These allow us to 
observe the trade-off between false positive and false 
negative detections, as the parameters of the system are 
varied. We have two axes in a chart for the ROC curve: a 
vertical axis representing true-positive rate (TPR) and a 
horizontal axis representing false-positive rate (FPR). An 
ideal classifier draws a curve that intersects with a point 
(TPR, FPR) = (1.0, 0.0) which correspond to the top-left 
corner of a chart, thus we have AUC=1.0. Therefore, closer 
the AUC to 1.0, better the classifier performance.  

Results 
In this section, we investigate how well our curb ramp 
classifier can classify the curb ramp image patches.  
 Figure 3 shows the ROC curve for our curb ramp 
classifier. As we noted in the previous section, the ideal 
classifier will have TPR=1.0 and FPR=0, which 
corresponds to the top-left corner of the graph, and 
AUC=1. As we vary a parameter, TPR and FPR changes 
and draws a curve with AUC=0.996. When FPR=0 we 
have TPR=0.773, i.e., the classifier manages to correctly 
classify about three quarter of curb ramp images, but 

 
Figure 3: The ROC curve that shows the performance of SVM 
classifier trained with HOG features on classifying presence or 
absence of a curb ramp in an image patch. The vertical axis 
shows true-positive rate of classification (i.e., correctly identifying 
all the curb ramp image patches), whereas the horizontal axis 
shows false-positive rate (i.e., classifying something that is not a 
curb ramp as a curb ramp.)  



importantly does not misclassify any non-curb ramp image 
as a curb ramp. On the other hand, when TPR=1.0, we 
have FPR=0.04, which means we identify all curb ramp 
images but misclassify 4% of non-curb ramp images as a 
curb ramps.  
 In Figure 4, we visually illustrate a detection result with 
an arbitrarily selected GSV image. Rectangles represent 
curb ramp classifications; there are four in total—three 
green rectangles are correct. The fourth (i.e., red rectangle) 
is part of the crosswalk, which is misclassified as a curb 
ramp. 

Conclusion and Future Work 
In this boaster, we presented early work of our first attempt 
in developing a curb ramp detector. We showed it is 
possible to classify curb ramp and other using SVM 
classifier with HOG features (AUC=0.996) albeit with a 
very small dataset. Future work includes using a larger 
dataset to train and test the curb ramp classification 
performance and to explore detection mechanisms for 
other types of sidewalk accessibility attributes (e.g., 
sidewalk obstacles such as poles and fire hydrants).  
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Figure 4: An example of sliding window curb ramp detection. 
Points classified as a curb ramp is enclosed by red rectangles. 
Curb ramps are correctly enclosed by the rectangles, but you can 
also see a part of the crosswalk is classified as a curb ramp, which 
is incorrect.    
 


