
 Exploring Early Solutions for Automatically Identifying Inaccessible
Sidewalks in the Physical World using Google Street View

Kotaro Hara, Victoria Le, Jin Sun, David Jacobs, Jon E. Froehlich
Department of Computer Science, University of Maryland, College Park, MD 20742, USA

{kotaro, jinsun, djacobs, jonf}@cs.umd.edu; vnle@umd.edu

Abstract
Poorly maintained sidewalks, missing curb ramps, and other
obstacles pose considerable accessibility challenges.
Although pedestrian- and bicycle-oriented maps and
associated routing algorithms continue to improve, there has
been a lack of work focusing on accessibility. There is
currently no way for a user to determine accessible areas of
a city prior to travel. In this paper, we explore the use of
computer vision techniques (a linear SVM) to detect
sidewalk accessibility problems in Google Street View
imagery. This is early work in a large on-going project.
Here, we focus on automatically identifying one key
accessibility barrier: the presence/absence of curb ramps.
Our preliminary results point to the potential of using
automatic, highly-scalable approaches to extract information
about physical accessibility from online map imagery.

Introduction
The lack of street-level accessibility information can have
a significant negative impact on the independence and
mobility of citizens (Nuernberger 2008; Thapar et al.
2004). Although maintenance issues such as buckled or

Copyright is held by the author/owner(s)
HCIC’13, June 23-27, 2013, Pacific Grove, California, USA

cracked sidewalks can pose significant accessibility
challenges so too do larger, more permanent infrastructural
issues such as utility poles or fire hydrants directly in
sidewalk paths or the lack of curb ramps at intersections.
The problem is not just that sidewalks remain inaccessible,
but also that there are no mechanisms to determine
accessible areas of a city before travel.
 In our previous work, we investigated whether crowd
workers (turkers) recruited from Amazon Mechanical Turk
(AMT) could locate, categorize, and assess sidewalk
accessibility problems in a manually curated set of GSV
images (Hara, Le, and Froehlich 2013). With simple
quality control methods, we found that turkers were were
able to identify sidewalk accessibility problems with an
accuracy of 93%. However, crowd sourcing is, by nature,
labor intensive. Here, we focus on investigating automated
methods to improve the scalability and efficiency of our
approach (see Figure 1 and 2).
 We expect that computer vision and machine learning
can be used in a variety of ways including (i) triage:
automatically scanning large map regions for potential
accessibility problems and utilizing crowdsourcing for
verification; (ii) view selection: automatically identifying
the most appropriate view to show crowdworkers

Positive Training Image Patches

Negative Training Image Patches

Figure 1: In this paper, we perform an early exploration of applying computer vision techniques to automatically identify sidewalk
accessibility attributes in Google Street View (GSV). Specifically, we explore the automatic identification of the presence/absence of curb
ramps (or “curb cuts”). We manually trained our classification/detection algorithm with positive training examples (green outlines above)
and negative training example (red outlines) from GSV images.

unobscured by cars or other occlusions; (iii) mensuration:
it’s difficult to ascertain distance and measurement
properties in a GSV scene—computer vision can help
determine key attributes such as a width of a sidewalk.

In this boaster, we focus on point (i) above: in particular,
exploring a simple, automated approach to detecting the
presence/absence of curb ramps in GSV images.

Related Work
Our research is related to four threads of prior work:
machine learning-based object detection; the application of
computer vision in the domain of assistive technologies;
the use of omnidirectional street-level images as a
datasource; and the use of crowdsourcing for accessibility.
We briefly describe each in turn.
 The sliding window approach for object detection,
which we employ here, is widely used in computer vision
(Dalal and Triggs 2005; Liu et al. 2012; Rowley, Baluja,
and Kanade 1996). Rowley et al. introduced this technique
to detect human faces by classifying whether a small
window that is moved over an image (thus a “sliding
window”) contains a face. Liu et al. used a similar
approach for identifying a dog breed by detecting a face
and also face parts of a dog. Dalal and Trigg used it for
detecting pedestrians in city scenes. In this paper, we use
this approach to detect curb ramps in images of street
intersections collected from GSV.
 Applications of computer vision-based object detection
algorithms in the accessibility domain are primarily aimed
at supporting people with visual impairments (Lee, Leung,
and Medioni 2012; Ivanchenko, Coughlan, and Shen 2009;
Vázquez and Steinfeld 2012). For example, Lee et al. built
a real-time staircase detector to support low-vision or blind
people. Similarly, Ivanchenko et al. developed a crosswalk
detector to help blind users appropriately navigate
crosswalks. Vázquez and Steinfeld developed a mobile
application that suggests a better picture composition to

support blind users to take a better picture. Although
related, our approach is different; we are using GSV
imagery for offline detection of sidewalk accessibility
attributes—in particular curb ramps—to build a database
that can be used for accessibility-aware routing algorithms.
 The use of GSV in computer vision has also become
increasingly popular although not in the context of
accessibility (e.g., Doersch et al. 2012; Xiao and Quan
2009; Zamir and Shah 2010). Xiao et al. used GSV
imagery as dataset to investigated novel techniques of
multiple-view image segmentation; Zamir and Shah
developed an algorithm to match user-generated images
and GSV images to localize where user-generated images
were taken; Doersch used GSV images to extract
geographically informative elements of different cities
(e.g., shape of a window in Paris, iron railing in London),
potentially useful for computational geography. However,
to our knowledge, nobody has worked on detecting
sidewalk accessibility attributes in GSV imagery.
 Although computer vision techniques continue to
improve, it is unlikely that a purely automated approach
will achieve a sufficiently high level of accuracy to create a
useful system. Thus, we expect that any solution will likely
incorporate manual annotations or corrections from human
users as well. With the advent of the Internet and the
emergence of crowdsourcing labor markets (e.g.,
Mechanical Turk), there has been an increase of
crowdsourcing for accessibility (Bigham, Ladner, and
Borodin 2011). For example Lasecki et al. developed a
real-time captioning algorithm that harness human-power
to achieve high-quality video captioning (Lasecki et al.
2012). Most relevant to this boaster is our past work!
utilizing crowdsourcing and GSV (i) to identify sidewalk
accessibility problems to support people with mobility
impairments (Hara, Le, and Froehlich 2012; Hara, Le, and
Froehlich 2013) and (ii) to find bus stop landmarks to help
blind people locate bus stops (Hara et al. 2013).

Dataset and Study Method
To train an automatic curb ramp detector, we collected
images of intersections in Washington DC from GSV. We
used a linear Support Vector Machine (SVM) classifier
trained with Histogram of Oriented Gradient (HOG)
features and evaluated its classification performance.

Collecting Curb Ramp Image Patches
We manually collected 73 GSV images with visible curb
ramps from intersection in Washington DC (Figure 2a). In
each image, one member of the research team drew an
outline around curb ramps to create mask images (Figure
2b). We cropped a rectangular image patch from each GSV
image so the outlined area fit in an image patch (Figure

(a)

(b) (c)

40px

82px

(d)

Figure 2: (a) The original GSV image; (b) A curb ramp mask
provided by a member of the research team; (c) Masked parts of
the original image are cropped; (d) The cropped image patches are
resized to 82x40 pixel.

2c). We measured the median width and median height of
cropped image patches, and reshaped all of them to fit to
that dimension (window size=82x40 pixel) (Figure 2d).
Using this method, we obtained 109 curb ramp image
patches across the 73 GSV images. Similarly, we randomly
cropped 1,090 image patches that do not contain curb
ramps from the same GSV images.

Curb Ramp Classifier
To build a curb ramp classifier, we used a linear Support
Vector Machine (SVM) implemented in SVM-light
(Joachims 1999)—a well-known SVM library—with the
commonly used HOG feature descriptor implemented in
VLFeat (Vedaldi and Fulkerson 2008). Training a classifier
is a two-step process: we extract a set of features (feature
vector) from an image patch and label it as a positive (+1)
or a negative (-1); we then feed a set of pairs of a label and
a feature vector into a training algorithm.
 We extracted HOG feature vectors from manually-
labeled positive and negative curb ramp image patches. To
obtain a HOG feature vector from an image patch, we first
calculate a gradient vector—a pair of values that describe
how pixel color intensity changes along x- and y-axis—at
each pixel on the image patch. We split the image patch
into 10x5=50 small subsections (“cells”) of 8x8=64 pixels.
This is one of the cell sizes that is used in Dalal’s original
work that introduced the HOG (Dalal and Triggs 2005). In
each cell, we count a number of gradient vectors within
ranges of angles. We discretized gradient vector angles by
11.6 degrees to split them into 31 bins (31x11.6=360). This
produces a gradient histogram. Note: 11.6 degrees is a
default setting in VLFeat. We concatenate gradient
histograms from all of 50 cells and obtain 1,550-dimension
(31x50) feature vector for each image patch. A feature
vector that contains a curb ramp image patch is labeled +1
while a feature vector that contains no curb ramp image
patches is labeled as -1. We use these labels and associated
vectors as positive and negative training examples.
 We train a SVM classification model implemented in
SVM-light. We used 87 out of 109 positive examples and
870 out of 1090 negative examples to train the classifier.
We used the remaining 22 positive examples and 220
negative examples for testing.

Curb Ramp Detector
We use the curb ramp classifier we obtained to implement
a sliding window curb ramp detector, which is a three-step
process: First, we crop an image patch from the top-left
corner of an image with a 82x40 pixel window. Then we
use the trained classifier to classify if the cropped image
patch is a curb ramp or not. To do this, we move the
window to the left for one pixel and continue the process
until we reach the bottom-right corner. Because

consecutive windows with visible curb ramps will likely be
classified as curb ramps, we cluster detected points that are
close to each other with a mean shift clustering—a
clustering algorithm that does not require a number of
clusters before runtime.

ROC Curve and Area Under the Curve
We used two common measures used in computer vision to
evaluate the performance of our curb ramp classification:
the Receiver Operating Characteristic (ROC) curve and the
Area Under the Curve (AUC) measure. These allow us to
observe the trade-off between false positive and false
negative detections, as the parameters of the system are
varied. We have two axes in a chart for the ROC curve: a
vertical axis representing true-positive rate (TPR) and a
horizontal axis representing false-positive rate (FPR). An
ideal classifier draws a curve that intersects with a point
(TPR, FPR) = (1.0, 0.0) which correspond to the top-left
corner of a chart, thus we have AUC=1.0. Therefore, closer
the AUC to 1.0, better the classifier performance.

Results
In this section, we investigate how well our curb ramp
classifier can classify the curb ramp image patches.
 Figure 3 shows the ROC curve for our curb ramp
classifier. As we noted in the previous section, the ideal
classifier will have TPR=1.0 and FPR=0, which
corresponds to the top-left corner of the graph, and
AUC=1. As we vary a parameter, TPR and FPR changes
and draws a curve with AUC=0.996. When FPR=0 we
have TPR=0.773, i.e., the classifier manages to correctly
classify about three quarter of curb ramp images, but

Figure 3: The ROC curve that shows the performance of SVM
classifier trained with HOG features on classifying presence or
absence of a curb ramp in an image patch. The vertical axis
shows true-positive rate of classification (i.e., correctly identifying
all the curb ramp image patches), whereas the horizontal axis
shows false-positive rate (i.e., classifying something that is not a
curb ramp as a curb ramp.)

importantly does not misclassify any non-curb ramp image
as a curb ramp. On the other hand, when TPR=1.0, we
have FPR=0.04, which means we identify all curb ramp
images but misclassify 4% of non-curb ramp images as a
curb ramps.
 In Figure 4, we visually illustrate a detection result with
an arbitrarily selected GSV image. Rectangles represent
curb ramp classifications; there are four in total—three
green rectangles are correct. The fourth (i.e., red rectangle)
is part of the crosswalk, which is misclassified as a curb
ramp.

Conclusion and Future Work
In this boaster, we presented early work of our first attempt
in developing a curb ramp detector. We showed it is
possible to classify curb ramp and other using SVM
classifier with HOG features (AUC=0.996) albeit with a
very small dataset. Future work includes using a larger
dataset to train and test the curb ramp classification
performance and to explore detection mechanisms for
other types of sidewalk accessibility attributes (e.g.,
sidewalk obstacles such as poles and fire hydrants).

Acknowledgements
This work was supported by an NSF grant (IIS-1302338)
and a Google Faculty Research Award.

References
Bigham, Jeffrey P, Richard E Ladner, and Yevgen Borodin. 2011. “The Design
of Human-powered Access Technology.” In The Proceedings of the 13th
International ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS ’11), 3–10. New York, NY, USA: ACM.

Dalal, N, and B Triggs. 2005. “Histograms of Oriented Gradients for Human
Detection.” In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference On, 1:886–893 vol. 1.

Doersch, Carl et al. 2012. “What Makes Paris Look Like Paris?” ACM Trans.
Graph. 31 (4) (July).

Hara, Kotaro et al. 2013. “Improving Public Transit Accessibility for Blind
Riders by Crowdsourcing Bus Stop Landmark Locations with Google Street
View.” In In Submission to The Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility Technology.

Hara, Kotaro, Victoria Le, and Jon Froehlich. 2012. “A Feasibility Study of
Crowdsourcing and Google Street View to Determine Sidewalk Accessibility.”
In Proceedings of the 14th International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’12), Poster Session, 273–274. New
York, NY, USA: ACM.

Hara, Kotaro, Victoria Le, and Jon Froehlich.. 2013. “Combining
Crowdsourcing and Google Street View to Identify Street-level Accessibility
Problems.” In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13), tbd. New York, NY, USA: ACM.

Ivanchenko, V, J Coughlan, and H Shen. 2009. Staying in the Crosswalk: A
System for Guiding Visually Impaired Pedestrians at Traffic Intersections.
Assistive Technology Research Series. Vol. 25. NIH Public Access.

Joachims, Thorsten. 1999. “Advances in Kernel Methods.” In , ed. Bernhard
Schölkopf, Christopher J C Burges, and Alexander J Smola, 169–184.
Cambridge, MA, USA: MIT Press.

Lasecki, Walter et al. 2012. “Real-time Captioning by Groups of Non-experts.”
In Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology, 23–34. New York, NY, USA: ACM.

Lee, Young Hoon, Tung-Sing Leung, and G Medioni. 2012. “Real-time
Staircase Detection from a Wearable Stereo System.” In Pattern Recognition
(ICPR), 2012 21st International Conference On, 3770–3773.

Liu, Jiongxin et al. 2012. “Dog Breed Classification Using Part Localization.”
In Computer Vision – ECCV 2012 SE - 13, ed. Andrew Fitzgibbon et al.,
7572:172–185. Springer Berlin Heidelberg.

Nuernberger, Andrea. 2008. “Presenting Accessibility to Mobility-Impaired
Travelers (Ph.D. Thesis)”. University of California, Santa Barbara.

Rowley, Henry, Shumeet Baluja, and Takeo Kanade. 1996. “Human Face
Detection in Visual Scenes.” In Advances in Neural Information Processing
Systems 8, 875–881.

Thapar, Neela et al. 2004. “A Pilot Study of Functional Access to Public
Buildings and Facilities for Persons with Impairments.” Disability and
Rehabilitation 26 (5) (January 1).

Vázquez, Marynel, and Aaron Steinfeld. 2012. “Helping Visually Impaired
Users Properly Aim a Camera.” In Proceedings of the 14th International ACM
SIGACCESS Conference on Computers and Accessibility, 95–102. New York,
NY, USA: ACM.

Vedaldi, A, and B Fulkerson. 2008. “{VLFeat}: An Open and Portable Library
of Computer Vision Algorithms.”

Xiao, Jianxiong, and Long Quan. 2009. “Multiple View Semantic
Segmentation for Street View Images.” In Computer Vision, 2009 IEEE 12th
International Conference On, 686–693.

Zamir, Amir Roshan, and Mubarak Shah. 2010. “Accurate Image Localization
Based on Google Maps Street View.” In Proceedings of the European
Conference on Computer Vision (ECCV).

Figure 4: An example of sliding window curb ramp detection.
Points classified as a curb ramp is enclosed by red rectangles.
Curb ramps are correctly enclosed by the rectangles, but you can
also see a part of the crosswalk is classified as a curb ramp, which
is incorrect.

