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Introduction 
Poorly maintained sidewalks and street intersections pose considerable accessibility challenges 
for people with mobility-impairments [13,14]. According to the most recent U.S. Census (2010), 
roughly 30.6 million adults have physical disabilities that affect their ambulatory activities [22]. Of 
these, nearly half report using an assistive aid such as a wheelchair (3.6 million) or a cane, 
crutches, or walker (11.6 million) [22]. Despite comprehensive civil rights legislation for Americans 
with Disabilities (e.g., [25,26]), many city streets, sidewalks, and businesses in the U.S. remain 
inaccessible. The problem is not just that street-level accessibility fundamentally affects where 
and how people travel in cities, but also that there are few, if any, mechanisms to determine 
accessible areas of a city a priori. Indeed, in a recent report, the National Council on Disability 
noted that they could not find comprehensive information on the “degree to which sidewalks are 
accessible” across the US [15]. This lack of information can have a significant negative impact on 
the independence and mobility of citizens [13,16] For example, in our own initial formative 
interviews with wheelchair users, we uncovered a prevailing view about navigating to new areas 
of a city: “I usually don’t go where I don’t know [about accessible routes]” (Interviewee 3, congenital 
polyneuropathy). Our overarching research vision is to transform the way in which street-level 
accessibility information is collected and used to support new types of assistive map-based tools.  

Traditionally, sidewalk assessments have been conducted via in-person street audits [19,20], 
which are labor intensive and costly [17], or more recently, via smartphone applications, which are 
done on a reactive basis and require physical presence [27]. Although some cities offer sidewalk 
information online (e.g., through government 311 databases [21]), these solutions are not 

    
Figure 7. Our vision is to transform the way street-level accessibility information is collected and visualized. With our new scalable data collection methods, 

we aim to support a new class of accessibility-aware map tools such as (a) accessibility-aware navigation tools that provide personalized route information 

based on a user’s reported mobility level and (b) visual analytic tools that allow citizens and governments to easily assess a city’s street-level accessibility.   
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comprehensive, rely on in situ reporting, and are not specifically focused on collecting and 
providing accessibility information. Some work exists on modeling and visualizing accessibility 
information in the built environment [3,12,13]; however, again these models are constrained by a 
lack of data describing street-level accessibility and the resulting systems have not been widely 
deployed. 

In contrast, for the past three years our research group has been pursuing a twofold alternative 
vision [5–10]: first, to develop scalable data collection methods for remotely acquiring street-level 
accessibility information using a combination of crowdsourcing, computer vision, and machine 
learning along with online map imagery such as Google Street View (GSV) and high resolution 
top-down photographs such as satellite or flyover imagery. Second, to use this new data to 
design, develop, and evaluate a novel set of navigation and map tools for accessibility. For 
example, imagine a mobile phone application that allows users to indicate their ambulatory 
ability (e.g., motorized wheelchair, walker) and then receive personalized, interactive accessible 
route recommendations to their destination (Figure 1a). As another example, inspired by 
walkscore.com, imagine an interactive map visualization tool that allows you to quickly assess the 
a city’s street-level accessibility (Figure 1b)—how might such a tool impact where people choose 
to live, how governments invest in street-level infrastructure, or even how property values are 
assessed? 

In this article, we provide a brief history of our work starting with initial studies exploring the 
viability of using GSV imagery as a reliable source of street-level accessibility and ending with a 
treatment of our current work on what we call assistive location-based technologies—location-
based technologies that specifically incorporate accessibility features to support navigating, 
searching, and exploring the physical world. We close with a summary of open future work and a 
call to action for others in the community to work on this important problem. 

Previous Research 
A majority of our work thus far has focused on the first part of our vision: developing scalable data 
collection methods using a combination of crowdsourcing and automated methods to locate, 
identify, and characterize street-level accessibility attributes in GSV. Below, we discuss GSV as a 
viable physical-world accessibility data source, the development of our initial crowdsourcing 
labeling tools, and our more recent work on semi-automated labeling of accessibility features in 
GSV imagery.  

    
Figure 8. Our custom image labeling tools on web browsers: (a) The early version of the interface, which lets a user mark the location of the sidewalk 

problem and categorize the problem type (e.g., an obstacle in a path) on a static GSV images [6]; (b) The labeling interface from our most recent work [10], 

which allows a user to adjust the camera angle (pan and zoom) and search for and label accessibility attributes in GSV. 

 

 



SIGACCESS 
Newsletter 

 Issue 113 
October 2015 

 

   
Page 15 

Viability of GSV Imagery as a Source of Accessibility Information 
We describe two threads of work evaluating GSV imagery as a viable source of street-level 
accessibility information: first, can people with similar mobility impairments find and agree on 
accessibility problems in GSV imagery? Second, given that GSV images are collected semi-
infrequently, is image age a problem—that is, how well do problems identified in GSV represent 
the current state of the physical world? 

Towards the first question, we recruited three electric wheelchair users to investigate whether 
they could consistently identify accessibility problems in GSV [6]. Independently, the three 
participants were asked to locate and categorize accessibility problems in 75 curated static 
images of GSV using our custom-made image labeling tool (Figure 8a). In addition, they 
participated in an exit interview where we asked about their personal experiences with street-
level accessibility. Two key results emerged. First, our participants had high inter-labeler 
agreements, indicating that accessibility problems could be consistently identified solely from 
GSV imagery. Second, one of our participants stated that he already used GSV to examine an 
area for traversability before leaving his house—a result that has been echoed by more recent 
interviews that we conducted with 20 mobility impaired participants. Thus, though not 
specifically designed for this purpose, it appears that GSV is already being appropriated as a 
valuable source of accessibility information, reinforcing its use in our research. 

Towards the second question, perhaps the most significant concern about using online map 
imagery to remotely collect accessibility information is image age. The built environment evolves 
over time and accessibility issues found via GSV may no longer exist and/or new problems may 
emerge. While Google does not publish information about how often its GSV cars drive and 
capture new images, major cities appear to be updated approximately once every year or two 
(e.g., downtown Washington DC has seven captures in eight years). Less populated cities are 
updated less. Although previous work has reported high concordance between audits conducted 
in the physical world vs. using GSV imagery [2,17], the focus was not on accessibility. To this end, 
we physically audited 273 intersections in nearby cities (Washington, D.C. and Baltimore, MD) and 
compared them with audits performed with GSV images. We found nearly perfect agreement 
despite an average GSV image age of 2.2 years (SD=1.3). The 6 disagreements were due to recent 
or ongoing construction. Thus, based on our own physical audit and reports from prior work, we 
are confident that GSV is a viable source of street-level accessibility information. In addition, with 
the movement towards self-driving cars, drone-based photography, and more frequently 
updated satellite imagery, we expect that GSV-like datasets will become even more common and 
more frequently updated in the future.  

Crowdsourcing Sidewalk Accessibility Information 
With GSV imagery established as a reasonable dataset to collect street-level accessibility 
information, we began developing and studying interfaces to allow minimally trained online users 
to remotely find, label, and characterize sidewalk accessibility. We performed multiple studies 
[5,6,8,10] with Amazon Mechanical Turk, an online labor market where users are paid to perform 
small tasks. In our earliest work [6], we manually collected and curated 229 GSV images from 
Washington DC, Baltimore, NYC, and LA. Using our custom labeling tool (Figure 2a), workers 
were asked to draw an outline around four main types of accessibility problems and indicate their 
severity (Figure 2a). Unlike the traditional GSV interface, users could not pan, zoom, or move 
around in this version of our labeling interface, which was done to simplify interactions. To create 
a ground truth dataset, two members of our research team independently labeled all 229 images 
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and found: 67 images with Surface Problems, 66 images with Object in Path, 50 with Prematurely 
Ending Sidewalk, and 47 with Curb Ramp Missing.  

We then conducted an online experiment with 185 crowd workers. When compared to ground 
truth data, the workers correctly identified the presence of problems with 81% accuracy. Using 
majority voting as a simple quality control mechanism, this accuracy jumped to 87% with three 
workers and over 90% with five or more workers. We ran two subsequent crowdsourcing studies 
for collecting accessibility information on bus stop landmarks (e.g., bus stop shelters) [8] and curb 
ramp infrastructure [10] and found similar results—that is, above 80% labeling accuracy with a 
single crowd worker per location. This indicates that minimally trained online workers are indeed 
capable of remotely finding and labeling street-level accessibility problems and that simple 
quality control mechanisms can be used to reach accuracies of around 90%. We believe that these 
results can be improved through better training, providing active monitoring with feedback to 
help users learn when they have made a mistake, and warning or even eliminating poor quality 
labelers from the system. 

Increasing Data Collection Efficiency with Semi-automated Methods 
While our prior work showed that crowd workers could find and label street-level accessibility 
problems with high accuracy, this sole reliance on human labor limited scalability. To this end, we 
investigated ways to combine computer vision and machine learning in the data collection 
process [9,10]. We created Tohme (Figure 3), a system to collect geo-located curb ramp data using 
a combination of crowdsourcing, computer vision, machine learning and online map data [10]. In 
this work, we only focused on sidewalk curb ramps because of their significance to accessibility as 
well as their visual saliency and geospatial properties (e.g., often located on corners), which we 
thought would ease automated detection.  

Key components of Tohme include: (i) a web scraper for downloading street intersection data; (ii) 
two crowd worker interfaces for finding, labeling, and verifying the presence of curb ramps 
(Figure 2b); (iii) state-of-the-art computer vision algorithms for automatic curb ramp detection; 
and (iv) a machine learning-based workflow controller, which predicts computer vision 
performance and dynamically allocates work to either a human labeling pipeline or a computer 
vision + human verification pipeline. The system workflow is as follows. svDetect processes every 

 

 

 
Figure 9. We developed Tohme, a scalable system for semi-automatically finding curb ramps in Google Streetview (GSV) panoramic imagery using 

computer vision, machine learning, and crowdsourcing. The images above show an actual result from our evaluation: (a) Raw Google Street View image, (b) 

results of computer vision curb ramp detection (lighter red is higher confidence), and (c) results after crowdsourced verification. 

 



SIGACCESS 
Newsletter 

 Issue 113 
October 2015 

 

   
Page 17 

GSV scene producing curb ramp detections with confidence scores. svControl predicts whether 
the scene is difficult for a computer vision algorithm. If svControl predicts that the automated 
detections are likely to fail on a given scene, the detections are discarded and the scene is fed to 
svLabel for manual labeling instead. If not, the scene/detections are forwarded to svVerify for 
human verification. The workflow attempts to optimize accuracy and speed. 

To evaluate Tohme, we conducted a study using data collected from 1,086 intersections across 
four North American cities. We evaluated Tohme’s performance in detecting curb ramps across 
our entire dataset with 403 turkers. Alone, the computer vision sub-system currently finds 67% of 
the curb ramps in the GSV scenes, indicating that computer vision alone cannot solve this 
complex problem. However, by dynamically allocating work to the CV module or to the slower 
but more accurate human workers, Tohme performs similarly in detecting curb ramps compared 
to a manual labeling approach alone (F-measure: 84% vs. 86% baseline) but at a 13% reduction in 
human time cost. To put this in context, for a medium sized city like Washington, D.C. (which has 
8,209 intersections [21]), we can reduce the cost to collect curb ramp labels by 30 human hours 
(from 214 to 184 human hours). This is just the beginning. Our overall aim is to create semi-
automated methods that reduce total human hours by at least an order of magnitude. Though 
challenging, we think we can get there with new workflow algorithms, additional advances in 
computer vision applied to built infrastructure (e.g., [1]),  and better user interfaces.  

Ongoing Research 
In summary, our previous work demonstrated (i) the viability of using GSV as a massive source of 
street-level accessibility information, (ii) the feasibility of using crowdsourcing to identify 
accessibility problems, and (iii) methods to combine computer vision and machine learning 
techniques to increase the scalability of the data collection methods. 

Building on the above work, we are currently focused on two trajectories: (i) investigating how to 
coordinate crowds and machines to further increase the efficiency of our methods; and (ii) 
designing and developing the accessibility-aware applications that mentioned in the introduction 
(Figure 1). Towards (i), we are exploring new methods to semi-automatically separate and triage 
areas that need accessibility inspections. For example, with our labeling interfaces, we can 
randomly place crowd workers anywhere in a city (virtually via GSV). If some of these workers 
begin reporting significant accessibility issues, we can begin triaging those areas and assigning 
additional workers (and fewer workers to other areas). Relatedly, we are also investigating 
techniques to try and assess under examined areas in real-time. For example, imagine using the 
accessibility-aware navigation smartphone application shown in Figure 1a. If you inquire about a 
potential route that lacks accessibility information, we would like to develop methods capable of 
semi-automatically crowdsourcing that information in near real-time (similar to VisWis [4]).  

Towards (ii), we are designing and developing what we call assistive location-based 
technologies—location-based technologies that are geared towards supporting people with 
disabilities (Figure 7) to show the transformative value of our accessibility data. For example, our 
accessible heatmap mockup shown in Figure 7a would allow users to quickly understand and 
explore accessible areas (green) and inaccessible areas (red) of their cities and to ‘drill down’ into 
specific neighborhoods. Our hope is that this would allow people with mobility impairments to 
make better decisions about where to live in a city or where to stay when they are traveling. 
Similarly, we are working on accessibility-aware navigation tools (Figure 1b), which provides both 
a shortest path and a series of accessible path recommendations depending on the user’s 
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reported mobility level. Crucially, however, both these tools require large amounts of geo-located 
accessibility information—exactly what our scalable data collection methods hope to provide.  
Furthermore, we believe that these tools will enable governments, public health researchers, and 
urban planners to more easily assess the health of neighborhoods and to help them smartly 
allocate resources to improve city infrastructure. Our tools should also provide value to non-
mobility impaired persons—for example, those with situational impairments due to pushing a 
baby stroller, pulling a cart, etc. And, ideally, our hope is that the data could be integrated into 
pre-existing map-based tools such as Google Maps or OpenStreetMap rather than exist solely in 
specialized research prototypes. 

To collect large amount of accessibility data to advance these projects, we are transforming our 
data collection tools—which thus far have only been deployed on Amazon Mechanical Turk—into 
public facing applications so anyone can contribute to the data collection. Inspired and informed 
by online citizen science website (e.g., zooniverse.org), we are creating a webpage that allows 
both volunteers and paid crowd workers (turkers) to label the accessibility problems in the 
physical world. Here, we are investigating, for example, if intrinsically motivated people like 
wheelchair users or their caregivers perform differently or provide different types of labels from 
turkers. The image labeling interface is similar to the one shown in Figure 8b with small updates 
like more label types, ability to freely “walk” around in the virtual world, and detailed feedback on 
their contribution to collecting street-level accessibility data. Our interfaces also allow users to 
comment and upload more recent photos if there is a discrepancy in GSV. 

As a start, we are collecting accessibility data in two US cities: Washington, D.C. and Baltimore. 
These cities were selected because of their relatively large population and land area [23,24] as 
well as their proximity to the University of Maryland, which makes them both convenient for 
conducting on-site audits. Based on our own calculation using OpenStreetMap 
(openstreetmap.org), Washington, D.C. and Baltimore have total street lengths of: 670 mi and 
1,400 mi respectively. We are planning to ask multiple contributors to audit each street and label 
sidewalk accessibility problems in GSV, which will allow us to get more accurate data through 
majority vote based data aggregation (i.e., similar to our prior work [6,8]).  

Future Work 
We will publish the collected accessibility information as a data dump and provide API access. We 
hope that this will enable and spur the development of a broad range of new applications and 
provide new tools for research. It will offer opportunities for HCI researchers and commercial 
entities to design accessibility-aware tools beyond what we described above, and we invite you to 
join us in these efforts. For example, we imagine a tool like Yelp incorporating our accessibility 
data to enhance its search capability—restaurants could be searched not only with location, 
cuisine and reputations but also based on their level of accessibility. The accessibility data could 
also be used in broad interdisciplinary research areas. For instance, we expect public health 
researchers and urban planners to use our data to analyze relationship between neighborhood 
accessibility and health of those who live there, similar to the studies that investigated how 
neighborhood characteristics like the presence of amenities  (e.g., recreational facilities) and 
perceived safety affected residents’ physical activity levels [11,18]. 

The key future challenges are to collect comprehensive data about indoor accessibility and 
capture changes in accessibility of the built environment. While mobile crowdsourcing 
applications like Wheeelmap and AXSMap attempt to collect granular indoor accessibility 
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information (e.g., presence of accessible bathroom), the data remains sparse due to limited 
adoption by users and there are no known scalable data collection solutions. Similarly, there are 
no prescribed ways to react to temporary accessibility barriers that arise in daily or hourly basis 
(e.g., constructions that obstruct sidewalks, changes in pedestrian density). Some possible 
solutions here include exploring the use of potentially rich but untapped sources of accessibility 
information such as daily-updated satellite imagery (e.g., planet.com) or even surveillance video 
streams (e.g., placemeter.com). 

Conclusion 
We described our twofold vision to, first, invent and study new scalable methods to collect street-
level accessibility information and, second, to use this data to design, develop, and evaluate new 
map-based tools for accessibility. Our research thus far has demonstrated that GSV is a viable, 
massive untapped data source for accessibility information, that minimally trained crowd workers 
are capable of locating, labeling, and characterizing accessibility problems in GSV images using 
specially designed interfaces, and that automated methods can be used to increase the efficiency 
of data collection. Our on-going efforts include design, development, and evaluation of scalable 
data collection system in the wild as well as development of accessibility-aware applications. We 
expect our work to open up future research avenues in areas not limited in HCI, but also in public 
health, urban planning, and GIS. This is a large, on-going research effort and we are always 
looking for interested collaborators. Please feel free to contact us for more information. 
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